Равна производная y. Производная натурального логарифма и логарифма по основанию a


Дата: 10.05.2015

Как найти производную?

Правила дифференцирования.

Чтобы найти производную от любой функции, надо освоить всего три понятия:

2. Правила дифференцирования.

3. Производная сложной функции.

Именно в таком порядке. Это намёк.)

Разумеется, неплохо бы ещё иметь представление о производной вообще). О том, что такое производная, и как работать с таблицей производных - доступно рассказано в предыдущем уроке. Здесь же мы займёмся правилами дифференцирования.

Дифференцирование - это операция нахождения производной. Более за этим термином ничего не кроется. Т.е. выражения "найти производную функции" и "продифференцировать функцию" - это одно и то же.

Выражение "правила дифференцирования" относится к нахождению производной от арифметических операций. Такое понимание очень помогает избежать каши в голове.

Сосредоточимся и вспомним все-все-все арифметические операции. Их четыре). Сложение (сумма), вычитание (разность), умножение (произведение) и деление (частное). Вот они, правила дифференцирования:

В табличке приведено пять правил на четыре арифметических действия. Я не обсчитался.) Просто правило 4 - это элементарное следствие из правила 3. Но оно настолько популярно, что имеет смысл записать (и запомнить!) его как самостоятельную формулу.

Под обозначениями U и V подразумеваются какие-то (совершенно любые!) функции U(x) и V(x).

Рассмотрим несколько примеров. Сначала - самые простые.

Найти производную функции y=sinx - x 2

Здесь мы имеем разность двух элементарных функций. Применяем правило 2. Будем считать, что sinx - это функция U , а x 2 - функция V. Имеем полное право написать:

y" = (sinx - x 2)" = (sinx)"- (x 2)"

Уже лучше, правда?) Осталось найти производные от синуса и квадрата икса. Для этого существует таблица производных. Просто ищем в таблице нужные нам функции (sinx и x 2 ), смотрим, какие у них производные и записываем ответ:

y" = (sinx)" - (x 2)" = cosx - 2x

Вот и все дела. Правило 1 дифференцирования суммы работает точно так же.

А если у нас несколько слагаемых? Ничего страшного.) Разбиваем функцию на слагаемые и ищем производную от каждого слагаемого независимо от остальных. Например:

Найти производную функции y=sinx - x 2 +cosx - x +3

Смело пишем:

y" = (sinx)" - (x 2)" + (cosx)" - (x)" + (3 )"

В конце урока дам советы по облегчению жизни при дифференцировании.)

Практические советы:

1. Перед дифференцированием смотрим, нельзя ли упростить исходную функцию.

2. В замороченных примерах расписываем решение подробно, со всеми скобочками и штрихами.

3. При дифференцировании дробей с постоянным числом в знаменателе, превращаем деление в умножение и пользуемся правилом 4.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.
Вычисление производной - одна из самых важных операций в дифференциальном исчислении. Ниже приводится таблица нахождения производных простых функций. Более сложные правила дифференцирования смотрите в других уроках:
  • Таблица производных экспоненциальных и логарифмических функций
Приведенные формулы используйте как справочные значения. Они помогут в решении дифференциальных уравнений и задач. На картинке, в таблице производных простых функций, приведена "шпаргалка" основных случаев нахождения производной в понятном для применения виде, рядом с ним даны пояснения для каждого случая.

Производные простых функций

1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0

Пояснение :
Производная показывает скорость изменения значения функции при изменении аргумента. Поскольку число никак не меняется ни при каких условиях - скорость его изменения всегда равна нулю.

2. Производная переменной равна единице
x´ = 1

Пояснение :
При каждом приращении аргумента (х) на единицу значение функции (результата вычислений) увеличивается на эту же самую величину. Таким образом, скорость изменения значения функции y = x точно равна скорости изменения значения аргумента.

3. Производная переменной и множителя равна этому множителю
сx´ = с
Пример:
(3x)´ = 3
(2x)´ = 2
Пояснение :
В данном случае, при каждом изменении аргумента функции (х ) ее значение (y) растет в с раз. Таким образом, скорость изменения значения функции по отношению к скорости изменения аргумента точно равно величине с .

Откуда следует, что
(cx + b)" = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).


4. Производная переменной по модулю равна частному этой переменной к ее модулю
|x|" = x / |x| при условии, что х ≠ 0
Пояснение :
Поскольку производная переменной (см. формулу 2) равна единице, то производная модуля отличается лишь тем, что значение скорости изменения функции меняется на противоположное при пересечении точки начала координат (попробуйте нарисовать график функции y = |x| и убедитесь в этом сами. Именно такое значение и возвращает выражение x / |x| . Когда x < 0 оно равно (-1), а когда x > 0 - единице. То есть при отрицательных значениях переменной х при каждом увеличении изменении аргумента значение функции уменьшается на точно такое же значение, а при положительных - наоборот, возрастает, но точно на такое же значение.

5. Производная переменной в степени равна произведению числа этой степени и переменной в степени, уменьшенной на единицу
(x c)"= cx c-1 , при условии, что x c и сx c-1 ,определены а с ≠ 0
Пример:
(x 2)" = 2x
(x 3)" = 3x 2
Для запоминания формулы :
Снесите степень переменной "вниз" как множитель, а потом уменьшите саму степень на единицу. Например, для x 2 - двойка оказалась впереди икса, а потом уменьшенная степень (2-1=1) просто дала нам 2х. То же самое произошло для x 3 - тройку "спускаем вниз", уменьшаем ее на единицу и вместо куба имеем квадрат, то есть 3x 2 . Немного "не научно", но очень просто запомнить.

6. Производная дроби 1/х
(1/х)" = - 1 / x 2
Пример:
Поскольку дробь можно представить как возведение в отрицательную степень
(1/x)" = (x -1)" , тогда можно применить формулу из правила 5 таблицы производных
(x -1)" = -1x -2 = - 1 / х 2

7. Производная дроби с переменной произвольной степени в знаменателе
(1 / x c)" = - c / x c+1
Пример:
(1 / x 2)" = - 2 / x 3

8. Производная корня (производная переменной под квадратным корнем)
(√x)" = 1 / (2√x) или 1/2 х -1/2
Пример:
(√x)" = (х 1/2)" значит можно применить формулу из правила 5
(х 1/2)" = 1/2 х -1/2 = 1 / (2√х)

9. Производная переменной под корнем произвольной степени
(n √x)" = 1 / (n n √x n-1)

Приведена формула производной суммы и разности функций. Приведено доказательство и подробно разобраны примеры применения этой формулы.

Содержание

Формула производной суммы (разности) функций

Пусть и являются функциями от независимой переменной x . Пусть они дифференцируемы в некоторой области значений переменной x . Тогда, в этой области, производная от суммы (разности) этих функций равна сумме (разности) производных этих функций :
(1) .

Доказательство

Поскольку функции и дифференцируемы при , то существуют следующие пределы, которые являются производными этих функций:
;
.

Рассмотрим функцию y от переменной x , которая является суммой функций и :
.
Применим определение производной.


.

Тем самым мы доказали, что производная от суммы функций равна сумме производных:
.

Тем же способом можно показать, что производная от разности функций равна разности производных:
.
Это можно показать и другим способом, применяя только что доказанное правило дифференцирования суммы и :
.

Эти два правила можно записать в виде одного уравнения:
(1) .

Следствие

Выше мы рассмотрели правило нахождения производной от суммы двух функций. Это правило можно обобщить на сумму и разность от любого числа дифференцируемых функций.

Производная от суммы (разности) любого конечного числа дифференцируемых функций равна сумме (разности) их производных . С учетом правила вынесения постоянной за знак производной , это правило можно записать так:
.
Или в развернутом виде:
(2) .
Здесь - постоянные;
- дифференцируемые функции от переменной x .

Доказательство следствия

При n = 2 , применим правило (1) и правило вынесения постоянной за знак производной . Имеем:
.
При n = 3 применим формулу (1) для функций и :
.

Для произвольного числа n применим метод индукции. Пусть уравнение (2) выполняется для . Тода для имеем:

.
То есть из предположения, что уравнение (2) выполняется для следует, что уравнение (2) выполняется для . А поскольку уравнение (2) выполняется для , то оно выполняется для всех .
Следствие доказано.

Примеры

Пример 1

Найдите производную
.

Раскрываем скобки. Для этого применим формулу
.
Также используем свойства степенных функций .
;

;
.

Применяем формулу (2) для производной от суммы и разности функций.
.

Из таблицы производных находим:
.
Тогда
;
;
.

Окончательно имеем:
.

Пример 2

Найти производную от функции от переменной x
.

Приведем корни к степенным функциям .
.
Применяем правило дифференцирования суммы и разности.
.
Применяем формулы из таблицы производных .
;
;
;
;
;
.
Подставляем:
.
Приводим дроби к общему знаменателю.
.
Здесь мы учли, что заданная функция определена при .
.

Наверное, понятие производной знакомо каждому из нас ещё со школы. Обычно у учеников возникают трудности с пониманием этой, несомненно, очень важной вещи. Она активно применяется в различных областях жизни людей, и многие инженерные разработки были основаны именно на математических расчётах, полученных с помощью производной. Но прежде чем перейти к разбору того, что же такое производные чисел, как их вычислять и где они нам пригодятся, окунёмся немного в историю.

История

Являющееся основой математического анализа, было открыто (лучше даже сказать "изобретено", потому что в природе оно как таковое не существовало) Исааком Ньютоном, которого мы все знаем по открытию закона всемирного тяготения. Именно он впервые применил в физике это понятие для связывания природы скорости и ускорения тел. И многие учёные до сих пор восхваляют Ньютона за это великолепное изобретение, ведь по сути он изобрёл основу дифференциального и интегрального исчисления, фактически основу целой области математики под названием "математический анализ". Будь в то время Нобелевская премия, Ньютон с большой вероятностью получил бы её несколько раз.

Не обошлось и без других великих умов. Кроме Ньютона над развитием производной и интеграла потрудились такие именитые гении математики, как Леонард Эйлер, Луи Лагранж и Готфрид Лейбниц. Именно благодаря им мы получили теорию в таком виде, в котором она существует по сей день. Кстати, это Лейбниц открыл геометрический смысл производной, которая оказалась ничем иным, как тангенсом угла наклона касательной к графику функции.

Что же такое производные чисел? Немного повторим то, что проходили в школе.

Что такое производная?

Определять это понятие можно несколькими разными способами. Самое простое объяснение: производная - это скорость изменения функции. Представим график какой-нибудь функции y от x. Если это не прямая, то она имеет некоторые изгибы в графике, периоды возрастания и убывания. Если брать какой-нибудь бесконечно малый промежуток этого графика, он будет представлять собой отрезок прямой. Так вот, отношение размера этого бесконечно малого отрезка по координате y к размеру по координате x и будет являться производной данной функции в данной точке. Если рассматривать функцию в целом, а не в конкретной точке, то мы получим функцию производной, то есть некую зависимость игрек от икс.

К тому же кроме как скорости изменения функции есть ещё и геометрический смысл. О нём мы сейчас и поговорим.

Геометрический смысл

Производные чисел сами по себе представляют собой некое число, которое без должного понимания не несёт никакого смысла. Оказывается, производная не только показывает скорость роста или уменьшения функции, а также тангенс угла наклона касательной к графику функции в данной точке. Не совсем понятное определение. Разберём его поподробнее. Допустим, у нас есть график какой-либо функции (для интереса возьмём кривую). На ней есть бесконечное множество точек, но есть такие области, где только одна единственная точка имеет максимум или минимум. Через любую такую точку можно провести прямую, которая была бы перпендикулярна графику функции в этой точке. Такая линия будет называться касательной. Допустим, мы провели её до пересечения с осью OX. Так вот, полученный между касательной и осью OX угол и будет определяться производной. А точнее, тангенс этого угла будет равняться ей.

Поговорим немного о частных случаях и разберём производные чисел.

Частные случаи

Как мы уже говорили, производные чисел - это значения производной в конкретной точке. Вот например, возьмём функцию y=x 2 . Производная х - число, а в общем случае - функция, равная 2*x. Если нам необходимо вычислить производную, скажем, в точке x 0 = 1, то получаем y"(1)=2*1=2. Всё очень просто. Интересный случай представляет производная Вдаваться в подробное объяснение того, что такое комплексное число, мы не будем. Скажем лишь, что это число, которое содержит в себе так называемую мнимую единицу - число, квадрат которого равен -1. Вычисление такой производной возможно только при наличии следующих условий:

1) Должны существовать частные производные первого порядка от действительной и мнимой части по игрек и по икс.

2) Выполняются условия Коши-Римана, связанные с равенством частных производных, описанных в первом пункте.

Другим интересным случаем, хотя и не таким сложным как предыдущий, является производная отрицательного числа. На самом деле любое отрицательное число можно представить как положительное, умноженное на -1. Ну а производная постоянной и функции равна постоянной, умноженной на производную функции.

Интересно будет узнать о роли производной в повседневной жизни, и именно это сейчас и обсудим.

Применение

Наверное, каждый из нас хоть раз в жизни ловит себя на мысли, что математика вряд ли пригодится ему. А такая сложная штука, как производная, наверное, вообще не имеет применения. На самом деле, математика - и все её плоды развивает в основном физика, химия, астрономия и даже экономика. Производная положила начало который дал нам возможность делать выводы из графиков функций, и мы научились интерпретировать законы природы и обращать их в свою пользу благодаря ему.

Заключение

Конечно, не каждому, возможно, пригодится производная в реальной жизни. Но математика развивает логику, которая уж точно будет нужна. Не зря ведь математику называют царицей наук: из неё складываются основы понимания других областей знаний.