Сцепление генов и кроссинговер. Основные положения хромосомной теории Наследственности Генетический анализ полного и неполного сцепления

Блок информации.

Сцепление генов.

В начале 20-го века (1902-1907гг.) американским учёным У.Сеттоном и немецким эмбриологом Т.Бовери был обнаружен параллелизм в наследовании признаков и поведении хромосом клеточного ядра в процессе гаметогенеза и при оплодотворении. Это подтвердило локализацию наследственной информации в хромосомах. Установлено, что число генов значительно превышает число хромосом. Так у человека - 46 хромосом, а генов от 70 000 до 100 000. Следовательно, в каждой хромосоме локализовано большое количество генов. Гены одной хромосомы наследуются совместно (сцеплено). Экспериментальное исследование этого явления проведено американским генетиком Т.Морганом и его сотрудниками: А.Стертевантом, А.Бриджесом и Г.Мёллером в 1910-1916гг. Эти исследования подтвердили хромосомную локализацию генов и легли в основу хромосомной теории наследственности.

Основные положения хромосомной теории Наследственности.

1. Каждый ген занимает в хромосоме определённое место - локус.

2. Гены в хромосоме расположены линейно в определенной последовательности.

3. Различные хромосомы содержат неодинаковое число генов. Набор генов каждой негомологичной хромосомы уникален.

4. Гены одной хромосомы образуют " группу сцепления и наследуются вместе, т.е. сцеплено.

5. Число групп сцепления равно числу хромосом в гаплоидном наборе, (у дрозофилы их четыре, у кукурузы - 10, у мыши - 20, у человека -23).

6. Между гомологичными хромосомами может происходить обмен аллельными генами, т.е кроссинговер.

7. Частота кроссинговера прямо пропорциональна расстоянию между генами в группе сцепления.

8. За единицу расстояния между генами в группе сцепления принята особая единица - морганида (М). 1М=1% кроссинговера.

Различают полное и неполное сцепление генов.

Полное сцепление.

В экспериментах на дрозофиле было установлено, что развитие

признаков, которые наследуются сцеплено контролируется генами одной

хромосомы. Гены окраски тела (b - серой и B - черной) и длины крыльев

(v - нормальные и V - короткие, рудиментарные крылья) локализованы в одной паре гомологичных хромосом.

Скрещивание серых мух с нормальными крыльями и серых мух с рудиментарными крыльями дает в первом поколении серых гибридов с нормальными

При проведении анализирующего скрещивания, из р, были выбраны самцы, т. к. известно, что у самцов дрозофил ахиазматический сперматогенез (т. е. кроссинговер не происходит и полнота сцепления генов ничем не нарушается).В результате такого скрещивания на свет появляются особи двух фенотипов, аналогичные исходным родительским формам, причем в равных количествах: расщепление по фенотипу 1:1.

Рассматриваемые совместно результаты обоих скрещивании убеждают в том что развитие анализируемых признаков контролируется Разными генами, и сцепленное наследование объясняется локализацией генов в одной хромосоме. Полнота сцепления в данном случае ничем не нарушается. Такое сцепление генов является полным.

Для изучения неполного сцепления из Р, были выбраны самки (генотип В| |b) у С амок во время гаметогенеза происходит кроссинговер. Поэтому дигетерозиготная особь образует дополнительные, т.е. кроссоверные сорта гамет. Вероятность их образования обусловлена вероятностью кроссинговера, т.е. зависит от расстояния между генами в группе сцепления.

Не рекомбинантные особи; у Рекомбинантные особи; при

них наблюдаются такие же образовании их генотипов

сочетания, что и у исходных участвовали кроссоверные

родительских форм гаметы.

В данном примере расщепление по фенотипу в потомстве получено следующее: серых мух с длинными крыльями - 41,5%; черных с короткими крыльями - 41,5%; серых короткокрылых - 8,5%; черных длиннокрылых - 8,5 %. Таким образом, вероятность появления в потомстве рекомбинантных особей составляет 17%. Следовательно, расстояние между генами В и V в группе сцепления равно 17 морганиидам.

Преобладание в потомстве серых длиннокрылых и черных короткокрылых мух, указывает на то, что гены В и V; Ь и V действительно сцеплены. С другой стороны, появление рекомбинантных особей говорит о том, что в определенном числе случаев происходит разрыв сцепления между генами В и V и генами в и V. Это результат кроссинговера.

Примером полного сцепления генов у человека может служить наследование резус-фактора. Оно обусловлено тремя парами С, Д, К, тесно сцепленных между собой, поэтому наследование резус - принадлежности происходит по типу моногибридного скрещивания. Другим примером тесного сцепления генов у человека является наследование катаракты и полидактилии. Гены гемофилии и дальтонизма локализованы в Х - хромосоме на расстоянии 9,8 морганид (М), т.е. подвергаются кроссинговеру, поэтому наследуются как неполностью сцепленные. Аутососмные гены резус-фактора и формы эритроцитов, расположенные друг от друга на расстоянии 3 М и так же является примером неполного сцепления.

В 1909 Ф. Янссенс при изучении мейоза у земноводных оонаружил хиазмы (перекресты) хромосом, которые являются цитологическим свидетельством кроссинговера. С этого времени было предпринято множество попыток объяснить механизм этого явления. Существует несколько теорий кроссинговера. Наиболее распространенными являются две гипотезы.

После повторного переоткрытия в 1900 г. правил наследования установленных г. Менделем в 1865 г. началась широкая экспериментальная проверка применимости их к различным животным и растениям.

Оказалось, что не все случаи наследования укладываются в эти правила.

Сталкиваясь в начале с отдельными отклонениями, а затем с множеством исключений из Менделизма, исследователи тщательно изучали их. В генетике начала зарождаться еще одна более широкая, чем менделизм теория – хромосомная теория наследственности.

Томас Морган окончательно связал явление наследственности с цитологией. Он доказал, что материальными носителями наследственности являются находящиеся в ядрах клеток хромосомы с заключенными в них генами.

Так как у каждого вида имеется строго определенное число хромосом, а количество различных признаков очень велико, приходится допустить, что в одной хромосоме лежит несколько или много генов определяющих признак.

Пример: у дрозофилы из 4 пар хромосом изучено 1000 генов, у кукурузы из 10 пар хромосом 500 генов, у человека из 23 пар – 2000генов, некоторые ученые утверждают, что до 1 млн.генов.

Может ли каждый ген быть локализован в отдельной хромосоме? Нет – не может.

Следовательно, в каждой хромосоме должно быть множество генов.

При гаметогенезе происходит расхождение хромосом, а вместе с ними и гены. Гены, расположенные в одной хромосоме наследуются целой группой и образуют группу сцепления.

Гены одной группы сцепления наследуются независимо от другой группы сцепления.

Число групп сцепления равно гаплоидному набору хромосом.

Пример: у дрозофилы 4 пары хромосом, из них найдено 4 группы сцепления; кролик – из 22 пар хромосом найдено 19 пар сцепления; мышь – из 20 пар хромосом найдено 19 пар сцепления; человек – из 23 пар хромосом найдено 25 групп сцепления, 22 группы – по числу пар аутосом, в X и Y хромосомах и 25-я группа сцепления в митохондриальной ДНК.

Явление сцепленного наследования признаков было обнаружено в 1906 году Бэтсоном и Пеннетом. Эти исследователи изучали скрещивание растений душистого горошка различающихся по двум признакам: форме пыльцы и окраске цветка. Согласно менделевским закономерностям у гибридов второго поколения в этом случае должно наблюдаться расщепление признаков, характерное для дигибридного скрещивания 9: 3: 3:1.

Однако Бэтсон и Пеннет обнаружил иное. Два признака (форма пыльцы и окраска цветка) у гибридов как бы стремились остаться в исходных родительских комбинациях.

Бэтсон и Пеннет не смогли дать этому объяснение.

Объяснение этому явлению было дано позже школой Томаса Моргана, введшего термин – сцепление генов. Он доказал, что гены находящиеся в одной хромосоме тесно связаны между собой, т.е. сцеплены и расположены в линейном порядке.

Создав хромосомную теорию наследственности, Морган доказал, что существует полное и неполное сцепление генов.

Свои опыты Морган проводил на мухе-дрозофиле.

Для I опыта взяты мухи: с серым телом и зачаточными крыльями самцы, которых он скрестил с самками черное тело длинные крылья.

д зачат Д длин

Гаметы С с


С д – гены расположены в одной хромосоме. По обеим парам они гомозиготны. Гибриды имели в F 1 100% длиннокрылые серые (гетерозиготные). Он отобрал самцов из F 1 и скрещивал их с самочками имеющих 2 рецессивных признака (анализирующее скрещивание).

♂ С с ♀ с

д Д д зачат

серые черные

длинные зачаточные

С с с с Во F 2 поколении появилось

потомство 2 х типов:

50% - серые с зачаточными крыльями,

д д Д д 50% - черные с длинными крыльями.

серые черные

зачат. длин.

Произошло полное сцепление генов.

II опыт. Самок Морган взял из F 1 серых длиннокрылых.

♀ СсДд х ♂ ссдд (анализирующее)

серое черное

длин. зачат.

С с с с с с С с

д д Д д д д Д д

серые черные черные серые

зачат. длин. зачат. длин.

Во II поколении получилось 4 разных фенотипа: 145 – черные длиннокрылые = 41,5%; 150 – серые зачаточные = 41,5%.

Как у родительских форм:

28% - серые длиннокрылые – 8,5%

33% - черные зачаточные – 8,5%

новые сочетания 17%

Сцепление в этом случае явилось не полным. Однако, гены находящиеся в одной хромосоме сцеплены не абсолютно. Большая часть особей имеет признаки родителей, а меньшая часть особей имеет новые сочетания признаков. Причиной неполного сцепления является кроссинговер.

Как можно объяснить это явление новых сочетаний, если гены входят в состав одной хромосомы?

Объясняется это тем, что во время гаметогенеза (при редукционном делении) хромосомы обвиваются друг около друга обмениваются частями, а затем они расходятся (разрываются) получаются новые хромосомы (одна часть от матери, другая от отца).

Кроссинговер

Процесс обмена участками хромосом получил название – перекреста хромосом или кроссинговер.

Наличие механизма кроссинговера расширяет возможность комбинативной изменчивости и имеет большое значение в эволюции животного мира.

Кроссинговер обнаруживается, когда гены находятся в гетерозиготном состоянии. Особи полученные с помощью кроссинговера называются кроссоверные и без кроссинговера некроссоверные.

Кроссинговер может быть одиночный, двойной и тройной. Чаще одиночный, реже двойной и тройной. Это объясняется тем, что хромосома представляет собой упругое тело, благодаря чему образование петли на одном участке тормозит ее образование на другом, в результате, перекрёст одновременно на двух участках происходит реже. Явление торможения называется интерференцией. При двойном перекрестке хромосомы разрываются в двух точках, в результате чего они обмениваются серединами, при тройном – в трех точках с обменами уже двумя участками хромосом, что приводит к еще большему возрастанию изменчивости половых клеток. Однако двойной и тройной перекресты происходят значительно реже одиночных.


Гены, локализованные в одной хромосоме, образуют групп; сцепления и наследуются, как правило, вместе.

Число групп сцепления у диплоидных организмов равно гаплоидному набору хромосом. У женщин - 23 группы сцепления, у мужчин - 24.

Сцепление генов, расположенных в одной хромосоме, может быть полным и неполным. Полное сцепление генов, т. е. совмест­ное наследование, возможно при отсутствии процесса кроссинговера. Это характерно для генов половых хромосом, гетерогаметных по половым хромосомам организмов (ХУ, ХО), а также л для генов, расположенных рядом с центромерой хромосомы, где кроссинговер практически никогда не происходит.

В большинстве случаев гены, локализованные в одной хромо­соме, сцеплены не полностью, и в профазе I мейоза происходит обмен идентичными участками между гомологичными хромо­сомами. В результате кроссинговера аллельные гены, бывшие в составе групп сцепления у родительских особей, разделяются и формируют новые сочетания, попадающие в гаметы. Происхо­дит рекомбинация генов.

Гаметы и зиготы, содержащие рекомбинации сцепленных ге­нов, называют кроссоверными. Зная число кроссоверных гамет и общее количество гамет данной особи, можно вычислить часто­ту кроссинговера в процентах по формуле: отношение числа кроссоверных гамет (особей) к общему числу гамет (особей) умножить на 100%.

По проценту кроссинговера между двумя генами можно опре­делить расстояние между ними. За единицу расстояния между ге­нами - морганиду - условно принят 1% кроссинговера.

Частота кроссинговера говорит и о силе сцепления между ге­нами. Сила сцепления между двумя генами равна разности между 100% и процентом кроссинговера между этими генами.

Генетическая карта хромосомы - это схема взаимного расположения генов, находящихся в одной группе сцепления. Определение групп сцепления и расстояний между генами не является Мининым этапом построения генетической карты хромосомы, щи кильку необходимо установить также соответствие изучаемой группы сцепления определенной хромосоме. Определение группы сцепления осуществляется гибридологическим методом, т.е. путем изучения результатов скрещивания, а исследование хромосом - цитологическим методом с проведением микроско­пического исследования препаратов. Для определения соответствия данной группы сцепления конкретной хромосоме при­меняют хромосомы с измененной структурой. Выполняют стандартный анализ дигибридного скрещивания, в котором один исследуемый признак кодируется геном, локализованным на хромосоме с измененной структурой, а второй - геном, локализованным на любой другой хромосоме. В случае если наблюдается сцепленное наследование этих двух признаков, можно говорить о связи данной хромосомы с определенной группой сцепления.

Анализ генетических и цитологических карт позволил сформулировать основные положения хромосомной теории наследствен­ности.

1. Каждый ген имеет определенное постоянное место (локус)

и хромосоме.

2. Гены в хромосомах располагаются в определенной линей­ной последовательности.

3. Частота кроссинговера между генами прямо пропорциональна расстоянию между ними и обратно пропорциональна силе сцепления.

  • II. Организм как целостная система. Возрастная периодизация развития. Общие закономерности роста и развития организма. Физическое развитие……………………………………………………………………………….с. 2
  • III.2.1) Понятие преступления, его основные характеристики.
  • Сцепленное наследование признаков. Анализ наследования одновременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов Fi иногда отличаются от ожидаемых в случае их независимого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали тенденцию к наследованию преимущественно родительских сочетаний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

    Зависимость сцепленного наследования признаков от локализации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления.

    На рис. 6.14 представлены результаты анализа наследования признаков окраски тела и формы крыльев у дрозофилы, а также их цитологическое обоснование. Обращает внимание, что при анализирующем скрещивании самцов из F 1 появлялось всего два вида потомков, сходных с родителями по сочетанию вариантов анализируемых признаков (серая окраска тела и нормальные крылья или черная окраска тела и короткие крылья) в соотношении 1:1. Это указывает на образование самцами F 1 всего двух типов гамет с одинаковой вероятностью, в которые попадают исходные родительские сочетания аллелей генов, контролирующих названные признаки (BV или bv).

    При анализирующем скрещивании самок F 1 появлялось четыре вида потомков со всеми возможными сочетаниями признаков. При этом потомки с родительскими сочетаниями признаков встречались в 83%. У 17% потомков имелись новые комбинации признаков (серая окраска тела и короткие крылья или черная окраска тела и нормальные крылья). Видно, что и в этих скрещиваниях проявляется склонность к сцепленному наследованию либо доминантных признаков, либо рецессивных (83%). Частичное нарушение сцепления (17% потомков) было объяснено процессом кроссинговера - обменом соответствующими участками гомологичных хромосом в профазе I мейоза (см. рис. 3.72).

    Из результатов скрещивания следует, что самки дрозофилы образуют четыре типа гамет, большинство из которых (83%) некроссоверные ((BV) и (bv)), 17% образуемых ими гамет появляются в результате кроссинговера и несут новые комбинации аллелей анализируемых генов ((Bv) и (bV)). Различия, наблюдаемые при скрещивании самцов и самок из F 1 с рецессивными гомозиготными партнерами объясняются тем, что по малопонятным причинам у самцов дрозофилы не происходит кроссинговера. В итоге самцы-дигетерозиготы по генам, расположенным в одной хромосоме, образуют два типа гамет. У самок кроссинговер имеет место и приводит к образованию некроссоверных и кроссоверных гамет, по два типа каждых. Поэтому в потомстве от анализирующего скрещивания появляется четыре фенотипа, два из которых обладают новыми по сравнению с родителями сочетаниями признаков.



    Рис. 6.14. Сцепленное наследование признаков

    (цвета тела и длины крыльев у дрозофилы):

    I - скрещивание чистых линий, II, III - анализирующее скрещиваний самцов и самок из F 1 .

    Изучение наследования других сочетаний признаков показало, что процент кроссоверного потомства для каждой пары признаков всегда один и тот же, но он различается для разных пар. Это наблюдение стало основанием для заключения, что гены в хромосомах расположены в линейном порядке. Выше отмечалось, что хромосома является группой сцепления определенных генов. Гомологичные хромосомы - это одинаковые группы сцепления, которые отличаются друг от друга лишь аллелями отдельных генов. При конъюгации гомологи сближаются своими аллельными генами, а при кроссинговере они обмениваются соответствующими участками. В результате появляются кроссоверные хромосомы с новым набором аллелей. Частота, с которой происходит обмен на участке между двумя данными генами, зависит от расстояния между ними (правило Т. Моргана). Процент кроссоверных гамет, несущих кроссоверные хромосомы, косвенно отражает расстояние между генами. Это расстояние принято выражать в сантшюрганидах. За одну сантиморганиду принимают расстояние между генами, при котором образуется 1% кроссоверного потомства (кроссоверных гамет).



    При увеличении расстояния между генами увеличивается вероятность кроссинговера на участке между ними в клетках-предшественницах гамет. Так как в акте кроссинговера участвуют две хроматиды из четырех, присутствующих в биваленте, то даже в случае осуществления обмена между генами данной пары во всех клетках-предшественницах гамет процент кроссоверных половых клеток не может превысить 50 (рис. 6.15). Однако такая ситуация возможна лишь теоретически. Практически с увеличением расстояния между генами возрастает возможность прохождения одновременно нескольких кроссинговеров на данном участке (см. рис. 5.9). Так как каждый второй перекрест приводит к восстановлению прежнего сочетания аллелей в хромосоме, с увеличением расстояния число кроссоверных гамет может не увеличиваться, а уменьшаться. Из этого следует, что процент кроссоверных гамет является показателем истинного расстояния между генами лишь при достаточно близком их расположении, когда возможность второго кроссинговера исключается.

    Нарушение сцепленного наследования родительских аллелей в результате кроссинговера позволяет говорить о неполном сцеплении в отличие от полного сцепления, наблюдаемого, например, у самцов дрозофилы.

    Использование анализирующего скрещивания в опытах Т. Моргана показало, что с его помощью можно выяснять не только состав пар неаллельных генов, но и характер их совместного наследования. В случае сцепленного наследования признаков по результатам анализирующего скрещивания можно установить также расстояние между генами в хромосоме.

    Плюсом обозначены клетки-предшественницы гамет, в которых кроссинговер прошел на участке между двумя данными генами; зачернены кроссоверные гаметы

    Генетические карты хромосом - это схема взаимного расположения и относительных расстояний между генами определенныххромосом, находящихся в одной группе сцепления.

    Впервые в 1913 - 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом . Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

    Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом.

    Физическая карта – графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов.

    Рестрикционная карта – вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4-6 п.н.). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.

    Сцепленное наследование признаков. Анализ наследования одновременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов Fi иногда отличаются от ожидаемых в случае их независимого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали тенденцию к наследованию преимущественно родительских сочетаний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

    Зависимость сцепленного наследования признаков от локализации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления.

    При анализирующем скрещивании самцов из F 1 появлялось всего два вида потомков, сходных с родителями по сочетанию вариантов анализируемых признаков (серая окраска тела и нормальные крылья или черная окраска тела и короткие крылья) в соотношении 1:1. Это указывает на образование самцами F 1 всего двух типов гамет с одинаковой вероятностью, в которые попадают исходные родительские сочетания аллелей генов, контролирующих названные признаки (BV или bv).

    При анализирующем скрещивании самок F 1 появлялось четыре вида потомков со всеми возможными сочетаниями признаков. При этом потомки с родительскими сочетаниями признаков встречались в 83%. У 17% потомков имелись новые комбинации признаков (серая окраска тела и короткие крылья или черная окраска тела и нормальные крылья). Видно, что и в этих скрещиваниях проявляется склонность к сцепленному наследованию либо доминантных признаков, либо рецессивных (83%). Частичное нарушение сцепления (17% потомков) было объяснено процессом кроссинговера - обменом соответствующими участками гомологичных хромосом в профазе I мейоза (см. рис. 3.72).

    Из результатов скрещивания следует, что самки дрозофилы образуют четыре типа гамет, большинство из которых (83%) некроссоверные ((BV) и (bv)), 17% образуемых ими гамет появляются в результате кроссинговера и несут новые комбинации аллелей анализируемых генов ((Bv) и (bV)). Различия, наблюдаемые при скрещивании самцов и самок из F 1 с рецессивными гомозиготными партнерами объясняются тем, что по малопонятным причинам у самцов дрозофилы не происходит кроссинговера. В итоге самцы-дигетерозиготы по генам, расположенным в одной хромосоме, образуют два типа гамет. У самок кроссинговер имеет место и приводит к образованию некроссоверных и кроссоверных гамет, по два типа каждых. Поэтому в потомстве от анализирующего скрещивания появляется четыре фенотипа, два из которых обладают новыми по сравнению с родителями сочетаниями признаков.



    Рис. 6.14. Сцепленное наследование признаков

    (цвета тела и длины крыльев у дрозофилы):

    I - скрещивание чистых линий, II, III - анализирующее скрещиваний самцов и самок из F 1 .

    Изучение наследования других сочетаний признаков показало, что процент кроссоверного потомства для каждой пары признаков всегда один и тот же, но он различается для разных пар. Это наблюдение стало основанием для заключения, что гены в хромосомах расположены в линейном порядке. Выше отмечалось, что хромосома является группой сцепления определенных генов. Гомологичные хромосомы - это одинаковые группы сцепления, которые отличаются друг от друга лишь аллелями отдельных генов. При конъюгации гомологи сближаются своими аллельными генами, а при кроссинговере они обмениваются соответствующими участками. В результате появляются кроссоверные хромосомы с новым набором аллелей. Частота, с которой происходит обмен на участке между двумя данными генами, зависит от расстояния между ними(правило Т. Моргана). Процент кроссоверных гамет, косвенно отражает расстояние между генами. Это расстояние принято выражать в сантшморганидах. За одну сантиморганиду принимают расстояние между генами, при котором образуется 1% кроссоверного потомства (кроссоверных гамет).

    При увеличении расстояния между генами увеличивается вероятность кроссинговера на участке между ними в клетках-предшественницах гамет. Так как в акте кроссинговера участвуют две хроматиды из четырех, присутствующих в биваленте, то даже в случае осуществления обмена между генами данной пары во всех клетках-предшественницах гамет процент кроссоверных половых клеток не может превысить 50 . Однако такая ситуация возможна лишь теоретически. Практически с увеличением расстояния между генами возрастает возможность прохождения одновременно нескольких кроссинговеров на данном участке (см. рис. 5.9). Так как каждый второй перекрест приводит к восстановлению прежнего сочетания аллелей в хромосоме, с увеличением расстояния число кроссоверных гамет может не увеличиваться, а уменьшаться. Из этого следует, что процент кроссоверных гамет является показателем истинного расстояния между генами лишь при достаточно близком их расположении, когда возможность второго кроссинговера исключается.



    Нарушение сцепленного наследования родительских аллелей в результате кроссинговера позволяет говорить о неполном сцеплении в отличие от полного сцепления, наблюдаемого, например, у самцов дрозофилы.

    Использование анализирующего скрещивания в опытах Т. Моргана показало, что с его помощью можно выяснять не только состав пар неаллельных генов, но и характер их совместного наследования. В случае сцепленного наследования признаков по результатам анализирующего скрещивания можно установить также расстояние между генами в хромосоме.

    Рис. 6.15. Схема, поясняющая низкий процент кроссоверных гамет

    (по отношению к двум данным генам)

    Плюсом обозначены клетки-предшественницы гамет, в которых кроссинговер прошел на участке между двумя данными генами; зачернены кроссоверные гаметы

    Генетические карты хромосом - это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.

    Впервые на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом . Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), для бактерий и вирусов.

    Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов.