Водород в таблице менделеева название. VII

Свечение водорода в газоразрядной трубке

Элемент: водород (Hydrogenium)

Химический символ: Н

Порядковый номер: 1

Год открытия: 1766

Стандартная атомная масса: 1.00784

Температура плавления: 13.99 К

Температура кипения: 20.271 К

Плотность при стандартных условиях: 0.08988 г/л

Скорость звука в водороде: 1310 м/с (газ при 27 °C)

Число стабильных изотопов: 2

Кристаллическая решётка: гексагональная

Облака межзвёздного газа, из которого рождаются звёзды, представляют собой в основном водород

Давным-давно, в одной далекой галактике… Впрочем, нет. Давным-давно, примерно 13,799 миллиардов (с точностью в 0, 021 миллиард) лет назад, когда не было еще ни одной галактики, да и Вселенной по сути не было, случилась инфляция. Некое могучее поле, именуемое инфлатоном, за невообразимо короткое время невообразимо сильно раздуло Ничего (или сингулярность). И возник наш мир. Уже через сто секунд после начала Большого взрыва во Вселенной было полным-полно протонов – ядер самого простого химического элемента, водорода. Получилось даже небольшое количество «слипшихся» протонов и нейтронов – ядер стабильного изотопа водорода, дейтерия. Почти все атомы водорода возникли именно тогда – во время Большого взрыва.

Несмотря на то, что уже 13 с лишним миллиардов лет идет процесс превращения водорода в другие элементы, и сейчас 75% всей видимой материи во Вселенной – это атомы водорода (про тёмную материю мы ничего не знаем и не скажем).

С водородом как простым веществом человечество познакомилось в 1671 году, когда Роберт Бойль догадался всыпать железные опилки в кислоту. Правда, тогда еще то, что выделялось в итоге, еще не выделялось в самостоятельное вещество. Права нового вещества и нового элемента нашему герою дали почти век спустя. В 1766 году Генри Кавендиш «признал» в продуктах реакции «опилки-кислота» самостоятельный газ. Правда, тогда само слово «водород» (или hydrogen, что в переводе с греческого обозначает то же самое – «рождающий воду», еще не появилось.

Генри Кавендиш

Зато Кавендиш назвал его «горючим воздухом» и предположил, что это и есть загадочный «флогистон», переносчик тепла. Впрочем, семнадцатью годами позже Антуан Лоран Лавуазье вместе с Пьером Симоном Лапласом сообразили, что «горючий воздух» при горении образует воду. Так и появилось современное название элемента номер один – его придумал Лавуазье самолично. Кстати, нужно отметить, что из всех четверых выше упомянутых ученых первооткрывателем водорода считается только Кавендиш. Что поделать, вопросы приоритета в истории науки самые странные.

Кстати, если говорить о названиях, то в нашей стране с 1801 года с подачи последователя Ломоносова, Василия Севергина, водород назывался водотворным веществом:

«Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление».

Василий Севергин

Лишь почти четверть века спустя другой почитатель Ломоносова, химик Михаил Соловьев, предложил слово «водород» (опираясь как раз на «кислород» Ломоносова).

До самого конца XIX века человечество имело дело исключительно с газообразным водородом. Но в 1898 году «король холода» Джеймс Дьюар наконец-то сумел получить жидкий водород, а годом позже появился и твердый. Для этого пришлось охладить вещество до 20,27 и 13,99 градусов Кельвина соответственно. Твёрдый водород имел плотность 0,086 г/см 3 и стал твердым веществом с одной из самых низких плотностей.

Статья Дьюара Sur la solidification de l’hydrogène вышла в журнале Annales de Chimie et de Physique ,
(7th series, vol. 18, Oct. 1899).

Джеймс Дьюар

Именно атом водорода стал «полем боя» для новой физики – непротиворечивую модель атома пытались построить и Томсон, и Резерфорд… В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома. И именно атом водорода подтвердил правоту Бора: рассчитанный на ее основе спектр первого элемента совпал с тем, что мы видим в реальности.

Следующее важнейшее открытие в области водорода сделал американец Гарольд Клейтон Юри, ученик физхимика Гилберта Льюиса, автора концепции ковалентной связи, кислот и оснований Льюиса, номинированного на Нобелевскую премию 41 раз, но так и не получившего абсолютно заслуженной награды (о нем мы обязательно напишем в рубрике «История химии»).

Гарольд Клейтон Юри

В конце 1920-х годов были открыты изотопы кислорода.

Исходя из того, что атомный вес кислорода ровно в 16 раз больше атомного веса водорода, а обычные спектрометрические и масс-спектрометрические данные давали разные соотношения, Юри предположил, что и у водорода есть более тяжелый изотоп. Поиски начались в 1931 году.

Юри рассчитал, что тяжелый водород должен иметь красное смещение в бальмеровской линии спектра от 0,1 до 0,18 нанометра. На том спектрографе, который был в распоряжении ученого, разница в линиях спектра обычного и тяжелого водорода должна была быть около 1 миллиметра. Это уже можно было различить, однако по расчетам выходило, что на 1 атом тяжелого изотопа водорода, должно приходиться около 4500 атомов легкого. Линия была, но очень слабая. И Юри не стал делать никакую «предварительную» публикацию, а решил поискать способ более надежного доказательства.

Вместе с Джорджем Мозли Мерфи Юри расчитал, что у тяжелого водорода будет чуть более высокая температура кипения. По всему выходило, что постепенно «упаривая» пять литров жидкого водорода, можно будет получить миллилитр образца, в котором тяжелого изотопа будет на два порядка больше.

Со второй попытки это удалось - дейтерий был открыт. Статья в PhysRev вышла в 1932 году под авторством Юри, Мерфи и знакомца Юри по университету Джонса Хопкинса Фердинанда Брикведде, который и сделал тот самый миллилитр обогащенного дейтерием водорода в криогенной лаборатории Национального бюро стандартов в Вашингтоне. Юри получил за свое открытие Нобелевскую премию по химии (и он был второй «чистый» физик после Резерфорда, получивший «химического Нобеля»). В том же году, в котором Юри открыл дейтерий, Джеймс Чедвик открыл нейтрон, который помог объяснить существование изотопов.

Свечение дейтерия в газоразрядной трубке

Сам Юри и предложил в 1933 году названия для изотопов. Первый, второй, третий – ну, если «третий» откроют. То бишь – протий, дейтерий и тритий. Уже упомянутый здесь Резерфорд не подкачал – и уже в 1934 году синтезировал таки тритий, который, в отличие от дейтерия оказался радиоактивным – с периодом полураспада 12,32 года.

Кстати, нужно помнить, что помимо протия, дейтерия и трития, в современных лабораториях удалось получить ядра водорода, еще более насыщенные нейтронами: от 4 Н до 7 Н (между прочим, о прогрессе науки говорит тот факт, что к моменту выхода книги «Популярная библиотека химических элементов» был известен только первый изотоп из этого ряда).

Забегая вперед, скажем, что сейчас тритий используется даже в быту: крошечные его количества (один килограмм трития обходится в 30 миллионов долларов) используют в качестве подсветки для часов. Электроны, испускаемые им при распаде, возбуждают люминофор, нанесенный на циферблат часов.

Тритиевая подсветка

Вскоре после открытия изотопов водорода, серьезное и грозное применение получил оксид дейтерия, попросту – тяжёлая вода. Как оказалось, дейтерий – идеальный замедлитель нейтронов, а тяжелая вода может еще и уносить излишнее тепло от реактора.

Ну а в начале 1950-х годов водород стал самым смертельным оружием из имеющегося у человечества: ученые научились воспроизводить процессы, происходящие в природе только в звёздах: термоядерный синтез, в котором из ядер изотопов водорода получаются ядра гелия, а излишек массы полностью превращается в энергию по знаменитой формуле Эйнштейна E=mc 2 .

Термоядерное оружие стало возможным только после открытия удивительного вещества – дейтерида лития-6. Этот гидрид решает сразу две проблемы. Во-первых, при облучении атомов лития-6 быстрыми нейтронами, которые в избытке образуются при первичном ядерном взрыве, синтезируется тритий.

6 3 Li + 1 0 n → 4 2 Не + 3 1 Н + 4,784 МэВ.

А затем с образовавшимся тритием в термоядерную реакцию вступает дейтерий.

2 1 Н + 3 1 Н → 4 2 Не + 1 0 n + 17,6 МэВ.

В 1952 году США взорвали первое термоядерное устройство, в 1953 году СССР испытал созданную Андреем Сахаровым водородную бомбу, а там и до стомегатонной «кузькиной матери» было недалеко.

Айви Майк, первое термоядерное испытание

Однако водород дает нам и жизнь. Очень много спорят, возможна ли жизнь на основе углерода. И предлагают взамен, например, кремний – но альтернатив водороду в органической химии нет. Как и водородсодержащим растворителям тоже, особенно воде. Все благодаря тому, что стандартный атом водорода – это протон с единственным электроном. Его ион – «голый» протон, не защищенный электронами. Благодаря этому атомы водорода способны образовывать слабые (намного слабее ковалентных) водородные связи.

Водородные связи между молекулами воды

Но именно из-за водородных связей вода существует в жидком состоянии такой длинный промежуток температур, именно водородные связи удерживают двойную спираль ДНК и позволяют белкам сворачиваться в структуры, в которых они выполняют все свои мириады функций в организмах. Более того, благодаря тому, что атом водорода, самый распространенный атом живых органзимах, обладает собственным магнитным моментом, стало возможным появление любимой игрушки доктора Хауса – МРТ. Те красивые картинки слоев головного мозга, которые мы так часто видим теперь, построены компьютером исключительно благодаря ядерному магнитному резонансу ядер атомов водорода.

Впрочем, выходит водород сейчас на позиции и мирной энергетики. И если до управляемого термоядерного синтеза нам сейчас далеко – пока что не удается обуздать стихию, бушующую в звездах и в термоядерном взрыве, то водородная энергетика сейчас на подъеме. Водородные автомобили, водородные топливные элементы… Впрочем, и здесь проблем хватает: технологии уперлись в технологические барьеры.

Как говорит крупнейший эксперт по водородным топливным элементам в нашей стране Юрий Добровольский из Института проблем химической физики РАН в Черноголовке, «…барьер состоит именно в комплексной энергоемкости – для летных средств немного тяжеловато, для наземного транспорта – занимает большой объем, а для энергетики – дороговато».

Юрий Добровольский

Кстати, в нашей стране запустили мегаконкурсы UP GREAT «Первый элемент» , посвященные прорыву этих барьеров. Конкурса два: энергоустановки для малых беспилотников («Первый элемент. Воздух») и энергоустановки для автомобилей и малых судов и авиации («Первый элемент. Земля»).

За преодоление технологического барьера полагаются значительные денежные призы, необременённые отчётной документацией: до 60 млн рублей в конкурсе «Воздух», до 140 млн рублей – «Земля». Есть за что побороться.

Впрочем, и «чистые экспериментаторы», и теоретики тоже продолжают работать с водородом. Особенно интересуют ученых экзотические состояния первого элемента: что будет с водородом, если его очень сильно сжать. Предполагалось, что водород в таких условиях станет… металлом, испытав фазовый переход. Ядра водорода давлением сближаются друг с другом на расстояние, сравнимое с длиной волны электронов (мы же помним, что в квантовом мире электрон – и волна, и частица одновременно). Таким образом, сила связи электрона с ядром становится нелокализованной, электроны образуют свободный электронный газ так же, как в металлах.

Более того, некоторые ученые считают, что металлический водород может быть сверхпроводником при комнатной температуре.

Штурм металлического водорода длился десятилетиями: существование предсказали уже в 1935 году Евгений Вигнер и Хиллард Гентингтон, однако только в 1996 году его смогли получить на короткое время, а в 2016-2017 годах развернулся настоящий научный детектив. Сначала в октябре 2016 года Ранга Диас и Исаак Сильвера из Гарварда провели эксперимент, в котором сжали водород под давлением почти в пять миллионов атмосфер и заявили, что им удалось увидеть блеск металлического водорода. Статья в Science вышла в январе 2017 года. Последовал вал критики и скептицизма, усилившийся после того, что Сильвера месяцем позже сказал, что повторить эксперимент они не смогут, ибо экспериментальная установка разрушена и образец металлического водорода утерян. В августе 2017 года авторы скорректировали свои данные, заявив, что в главном они правы – металлический водород они получили. В любом случае, было бы неплохо повторить.

Исследователи предполагают, что металлический водород может составлять основу ядер планет-гигантов типа Юпитера, что в свете открываемых сотнями космических тел за пределами Солнечной системы становится еще интереснее.

Металлический водород в разрезе Юпитера. Показан коричневым

…Водород – древнейший элемент нашего мира. Несмотря на то, что он – самый простой атом, важность его сложно переоценить. Мы можем бесконечно о нем рассказывать, написать о нем не одну книгу – и все же не исчерпать его.

Текст: Алексей Паевский

  • Обозначение - H (Hydrogen);
  • Латинское название - Hydrogenium;
  • Период - I;
  • Группа - 1 (Ia);
  • Атомная масса - 1,00794;
  • Атомный номер - 1;
  • Радиус атома = 53 пм;
  • Ковалентный радиус = 32 пм;
  • Распределение электронов - 1s 1 ;
  • t плавления = -259,14°C;
  • t кипения = -252,87°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
  • Степень окисления: +1; 0; -1;
  • Плотность (н. у.) = 0,0000899 г/см 3 ;
  • Молярный объем = 14,1 см 3 /моль.

Бинарные соединения водорода с кислородом:

Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

H 2

В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

Молекулы водорода обладают:

  • большой подвижностью;
  • большой прочностью;
  • малой поляризуемостью;
  • малыми размерами и массой.

Свойства газа водорода:

  • самый легкий в природе газ, без цвета и запаха;
  • плохо растворяется в воде и органических растворителях;
  • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
  • трудно поддается сжижению (по причине своей малой поляризуемости);
  • обладает самой высокой теплопроводностью из всех известных газов;
  • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
  • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
  • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Реакции водорода с простыми веществами

Водород принимает электрон, играя роль восстановителя , в реакциях:

  • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
  • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
  • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
  • с фтором : H 2 0 +F 2 = 2H +1 F
  • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

Реакции водорода со сложными веществами

  • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
  • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
  • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

Применение водорода

  • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
  • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
  • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
  • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
  • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
  • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
  • как топливо водород используют в смеси с СО.

В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

Способы получения водорода

Промышленные способы получения водорода:

  • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
  • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
  • термическим разложением метана: CH 4 = C + 2H 2 ;
  • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
  • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

Лабораторные способы получения водорода:

  • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
  • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .

Введение

Водород (Hudrogenium) был открыт в первой половине XVI века немецким врачом и естествоиспытателем Парацельсом. В 1776 г. Кавендиш (Англия) установил его свойства и указал отличия от других газов. Водород имеет три изотопа: протий №Н, дейтерий ІН или D, тритий іН или Т. Их массовые числа равны 1, 2 и 3. Протий и дейтерий стабильны, тритий - радиоактивен (период полураспада 12,5 лет). В природных соединениях дейтерий и протий в среднем содержатся в отношении 1:6800 (по числу атомов). Тритий в природе находится в ничтожно малых количествах.

Ядро атома водорода №Н содержит один протон. Ядро дейтерия и трития включают не только протон, но и один, два нейтрона. Молекула водорода состоит из двух атомов. Приведем некоторые свойства, характеризующие атом и молекулу водорода:

Энергия ионизации атома, эВ 13,60

Сродство атома к электрону, эВ 0,75

Относительная электроотрицательность 2,1

Радиус атома, нм 0,046

Межъядерное расстояние в молекуле, нм 0,0741

Стандартная энтальпия диссоциации молекул при 25єС 436,1

Водород. Положение водорода в периодической таблице Д.И. Менделеева

В самом конце XVIII и в начале XIХ века химия вступила в период установления количественных закономерностей: в 1803 году был сформулирован закон кратных отношений (вещества реагируют между собой в весовых отношениях, кратных химическим эквивалентам), а в 1814 году опубликована первая в истории химической науки таблица относительных атомных весов элементов. В этой таблице на первом месте оказался водород, а атомные массы других элементов выражались числами, близкими к целым.

Особое положение, которое с самого начала занял водород, не могло не привлечь внимания ученых, и в 1841 году химики смогли ознакомиться с теорией Уильяма Праута, развившего теорию Древнегреческих философов о единстве мира и предположившего, что все элементы образованы из водорода как из самого легкого элемента. Прауту возражал Й.Я. Берцелиус, как раз занимавшийся уточнением атомных весов: из его опытов следовало, что атомные веса элементов не находятся в целочисленных отношениях к атомному весу водорода. Но, возражали сторонники Праута, атомные веса определены еще недостаточно точно и в качестве примера ссылались на эксперименты Жана Стаса, который в 1840 году исправил атомный вес углерода с 11,26 (эта величина была установлена Берцелиусом) на 12,0.

И все же привлекательную гипотезу Праута пришлось на время оставить: вскоре тот же Стас тщательными и не подлежащими сомнению исследованиями установил, что, например, атомный вес хлора равен 35,45, т. е. никак не может быть выражен числом, кратным атомному весу водорода...

Но вот в 1869 году Дмитрий Иванович Менделеев создал свою периодическую классификацию элементов, положив в ее основу атомные веса элементов как их наиболее фундаментальную характеристику. И на первом месте в системе элементов, естественно, оказался водород.

С открытием периодического закона стадо ясно, что химические элементы образуют единый ряд, построение которого подчиняется какой-то внутренней закономерности. И это не могло вновь не вызвать к жизни гипотезу Праута, -- правда, в несколько измененной форме: в 1888 году Уильям Крукс предположил, что все элементы, в том числе и водород, образованы путем уплотнения некоторой первичной материи, названной им протилом. А так как протил, рассуждал Крукс, по-видимому, имеет очень малый атомный вес, то отсюда понятно и возникновение дробных атомных весов.

Но вот что любопытно. Самого Менделеева необычайно занимал вопрос: а почему периодическая система должна начинаться именно с водорода? Что мешает существованию элементов с атомным весом, меньше единицы? И в качестве такого элемента в 1905 году Менделеев называет... «мировой эфир». Более того, он помещает его в нулевую группу над гелием и рассчитывает его атомный вес -- 0,000001! Инертный газ со столь малым атомным весом должен быть по мнению Менделеева, всепроникающим, а его упругие колебания могли бы объяснить световые явления...

Увы, атому предвидению великого ученого не было суждено сбыться. Но Менделеев был прав в том отношении, что элементы не построены из тождественных частиц: мы знаем теперь, что они построены из протонов, нейтронов и электронов.

Но позвольте, воскликнете вы, ведь протон -- это ядро атома водорода. Значит Праут был все-таки прав? Да, он действительно был по-своему прав. Но это была, если можно так выразиться, преждевременная правота, потому что в то время ее нельзя было ни по-настоящему подтвердить, ни по-настоящему опровергнуть...

Впрочем, сам водород сыграл в истории развития научной мысли еще немалую роль. В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома и внутреннюю сущность закона периодичности. И теория Бора была признана потому, что рассчитанный на ее основе спектр водорода полностью совпал с наблюдаемым.

3. Почему водород, в отличие от всех других элементов, записывают в Периодической таблице Д.И. Менделеева дважды? Докажите правомочность двойственного положения водорода в Периодической системе, сравнив строение и свойства его атома, простого вещества и соединений с соответствующими формами существования других элементов - щелочных металлов и галогенов.

Водород можно записать в первую группу, т.к. его атом имеет на внешней оболочке 1 электрон, как и щелочные металлы, но также ему не хватает до завершения внешнего электронного слоя одного электрона, как и галогенам, поэтому его можно записать в седьмую группу. Водород при обычных условиях образует как и галогены двухатомную молекулу простого вещества с одинарной связью - газа, как фтор или хлор. Водород, как и галогены, соединяется с металлами, образуя нелетучие гидриды. Однако как и щелочные металлы водород может проявлять валентность только равную I, а галогены, как правило, образуют множество соединений, проявляя различную валентность.

Общая характеристика водорода как элемента

Химический знак – Н

Относительная атомная масса – 1,008

В соединениях водород одновалентен, степень окисления в соединениях с неметаллами равна +1, в соединениях с металлами равна –1.

Водород как вещество

Химическая формула – Н 2

Относительная молекулярная масса – 2,016

Способы получения водорода:

В лабораторных условиях водород получают несколькими способами:

· Действием кислот (серной, соляной) на некоторые металлы, в частности на цинк и железо;

· Действием раствора щелочи на металлический алюминий;

· Вытеснением активными металлами (Na, Ca и др.) из воды.

В промышленности основным видом сырья для получения водорода являются природные и нефтезаводские газы. В СССР водород получали в небольших масштабах методом неполного окисления метана при температуре 850 - 900°С в присутствии катализатора – никеля, нанесенного на оксид алюминия:

2CH 4 + O 2 → 2CO + 4H 2 + 71,4 кдж

Отделить водород от оксида углерода (II) можно путем его окисления водяным паром при температуре 200 – 250°С и в присутствии катализатора:

CO + H 2 O ↔ H 2 + CO 2 + 42 кдж

В местах с дешевой электрической энергией водород получают электролизом воды, к которой для увеличения ее электропроводности прибавляют какой-либо электролит, обычно щелочь или кислоту.

Физические свойства водорода:

  • Неметалл
  • Бесцветный, легкий (в 14,5 раз легче воздуха), трудно сжижаемый газ
  • Очень мало растворяется в воде, лучше – в органических растворителях
  • Наибольшая среди газообразных веществ скорость диффузии – молекулы водорода быстрее любых иных распространяются в среде другого вещества
  • Температура плавления равна -259,2°С, температура кипения равна -252,9°С.

Химические свойства водорода:

При комнатной температуре водород мало активен и реагирует только с фтором, а на свету – с хлором. В смесях с кислородом и воздухом водород при содержании более 4,5% образует взрывчатые смеси («гремучий газ»). Взрыв может произойти даже от маленькой искры.

1. Водород соединяется с кислородом

2H 2 + O 2 → 2H 2 O

2. Водород реагирует с оксидами некоторых металлов (при нагревании)

H 2 + CuO → H 2 O + Cu

3. Водород соединяется с некоторыми неметаллами и активными металлами

H 2 + Cl 2 → 2HCl

H 2 + S → H 2 S

H 2 + 2Na → 2NaH

Применение водорода:

Большое количество водорода используется для синтеза аммиака, который, в свою очередь, применяется для производства удобрений, азотной кислоты и как рабочее вещество холодильных машин. Много водорода расходуют на такие важные химические производства, как получение синтетической соляной кислоты, превращение жидких растительных жиров в твердые, преобразования низкосортных углей в жидкое топливо, получение метилового спирта из оксида углерода (II) и т.д. В металлургии его используют для получения таких металлов, как молибден и вольфрам восстановлением их оксидов.

Источники

1. Барков, С. А. Галогены и подгруппа марганца. Элементы VII группы периодической системы Д. И. Менделеева. Пособие для учащихся / С. А. Барков // М.: Просвещение, 1976.

2. Кузнецова, Н. Е. Химия: 8 класс. Учебник для учащихся общеобразовательных учреждений / Н. Е. Кузнецова, И. М. Титова, Н. Н. Гара, А. Ю. Жегин // М.: Вентана-Граф, 2008.

3. Леенсон, И. А. Путеводитель по химическим элементам. Из чего состоит Вселенная? / И. А. Леенсон // М.: АСТ, 2014. – 168 с.: ил.

4. Лидин, Р. А. Химические свойства неорганических веществ / Р. А. Лидин, В. А. Молочко, Л. Л. Андреева // М.: Химия, 2000.

5. Рудзитис, Г. Е. Химия. Учебное пособие для 7 – 11 классов вечерней (сменной) общеобразовательной школы. Часть 1 // Г. Е. Рудзитис, Ф. Г. Фельдман // М.: Просвещение, 1985.