Размножение бактерий и принципы их культивирования. Основные принципы и методы культивирования бактерий

Для выделения чистой культуры микроорганизмов, изучения их биологических свойств с целью идентификации, а также для получения биомассы необходимо размножить микроорганизмы в условиях лаборатории. Культивирование, или выращивание, микробов возможно лишь при создании определенных условий для их жизнедеятельности. Большинство бактерий, дрожжей, плесеней культивируют на искусственных питательных средах. Вирусы и риккетсии размножаются только в живых клетках, культуре тканей, курином эмбрионе или в организме животного.

Искусственные среды, применяемые для культивирования микроорганизмов, должны соответствовать определенным требованиям: быть легкоусвояемыми, с необходимым составом"азотистых и углеводных веществ, витаминов, необходимой концентрацией солей, с определенным водородным показателем (рН среды); обладать буферными свойствами; иметь оптимальный окислительно-восстановительный потенциал.

Питательные среды должны также содержать достаточное количество воды и обязательно быть стерильными, т. е. до посева не содержать микроорганизмов. Источником азота в средах могут быть различные органические, редко - неорганические соединения. Часто к безбелковым средам добавляют пептон, представляющий собой продукт неполного гидролиза белка. Протеолитические микроорганизмы в качестве азотистого вещества могут использовать желатин («животный студень»). Источником углерода в питательных средах чаще служат углеводы, спирты, некоторые органические кислоты.

Для приготовления искусственных питательных сред можно использовать различные естественные продукты: молоко, кровь, сыворотку, мясо, желток куриного яйца, картофель и другие органические вещества и минеральные соли.

Искусственные питательные среды по назначению подразделяют на четыре основные группы: универсальные, специальные, избирательные (элективные) и дифференциально-диагностические.

К универсальным средам относят мясо-пептонный бульон и мясо-пептонный агар, на которых растут многие виды патогенных и непатогенных бактерий.

Специальные среды применяют для выращивания бактерий, не множающихся на универсальных средах. К специальным относят еды с молоком, сывороткой крови, с добавлением крови животных,т-чюкозы и др. На них выращивают молочнокислые бактерии, паТ огенные и другие микроорганизмы.

В избирательных (элективных) средах хорошо развиваются только бактерии определенных видов. К таким средам относятся среды обогащения, в которых интересующий исследователя вид растет быстрее сопутствующих бактерий. Например, среда Кесслер, содержащая в своем составе генцианвиолет и желчь крупного рогатого скота, элективна для устойчивых к этим веществам грамотрицательных кишечных палочек и вместе с тем селективна для чувствительных грамположительных



бактерий.

Дифференциально-диагностические среды используют для дифференциации определенных видов бактерий по их культуральным и биохимическим свойствам. К ним относятся:

среды для определения протеолитической активности (мясопептонный желатин - МПЖ, молочный агар и др.);

среды для определения ферментации углеводов (среды Гисса, Эидо, Плоскирева и др.);

среды для определения гемолитической способности (кровяной агар и другие среды с добавлением крови животных);

среды для определения восстановительной (редуцирующей) способности микроорганизмов (среда Вильсон-Блера);

селективные среды, применяемые для дифференциации прототрофных и ауксотрофных бактерий.

По консистенции питательные среды могут быть плотными, полужидкими и жидкими. Для получения сред плотной консистенции к жидким средам добавляют 2-2,5 % агара или 10-20 % желатина. Полужидкие среды получают при добавлении 0,5- 1,0 % агара. Агар (по-малайски «желе») - плотное волокнистое вещество, получаемое из красных водорослей и образующее в водных растворах плотный гель (студень). Он состоит в основном из полисахаридов (70-75 %). Основными компонентами агара являются высокомолекулярные вещества агароза и агаропептин, которые не расщепляются и не усваиваются микроорганизмами. В связи с этим агар не является питательным субстратом, его добавляют в среды исключительно для получения плотной консистенции. Агар расплавляется в воде при 100 °С, а застывает при 40-43 °С. Его выпускают в виде желтоватых пластинок или серовато-белого порошка.

Осмотические условия, необходимые для жизнедеятельности микробов, создают в питательной среде добавлением хлорида натрия или определенным сочетанием солей фосфата натрия и фосфата калия Для жизнедеятельности микроорганизмов большое значение имеет реакция среды - водородный показатель (рН), который определяется соотношением водородных (Н +) и гидроксильных (ОН) ионов. Он представляет собой логарифм числа абсолютной концентрации водородных ионов.

Водородный показатель нейтральной реакции соответствует 7,0. В этом случае число водородных ионов равно числу гидроксильных. Показатель ниже 7,0 указывает на кислую реакцию, а выше 7,0 - на щелочную. Микроорганизмы приспособились развиваться в условиях с чрезвычайно широким диапазоном рН - от 2,0 до 8,5. Большинство сапрофитных и патогенных микроорганизмов культивируют при слабощелочной реакции среды с рН 7,2-7,4. Для культивирования молочнокислых бактерий, дрожжей и плесеней необходима кислая реакция среды, рН 5,0-6,5.

В настоящее время многие питательные среды выпускают в виде готовых сухих сред-полуфабрикатов, содержащих все необходимые для жизнедеятельности микроорганизмов ингредиенты. Для приготовления питательной среды порошок разводят водой, полученную смесь кипятят, устанавливают необходимое значение рН и стерилизуют.

Большое значение для роста и размножения микроорганизмов на искусственных питательных средах имеют температурные условия. По отношению к температурному режиму все микроорганизмы делят на три группы: психрофильные (холодолюбивые), мезофильные (средние), термофильные (теплолюбивые). Температурные границы размножения у психрофилов составляют от 0 до 20 °С, у мезофилов - от 20 до 45 °С, у термофилов - от 45 до 70 °С.

При выращивании аэробов посевы культивируют в термостатах при доступе кислорода воздуха, т. е. в обычных условиях. Для культивирования анаэробов создают бескислородные условия, которые можно достичь физическими, химическими и биологическими методами. Используют также анаэробные термостаты.

Физические методы основаны на создании вакуума в специальных аппаратах анаэростатах или в вакуум-эксикаторах, в которые сначала помещают посевы, а затем в аппаратах создают разрежение.

Иногда воздух в анаэростатах заменяют углекислым газом, азотом или другим инертным газом. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубине столбика питательного агара или внутри запаянных стеклянных трубок. Анаэробные условия можно создать и более простыми способами: с помощью слоя агара, залитого поверх посевов на плотной питательной среде, или с помощью вазелинового масла, которым покрывают жидкую питательную среду (среда Китта-Тароцци). Химические методы заключаются в том, что в эксикатор с посевами помещают химические вещества, например пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в герметически закупоренных чашках Петри. При этом кислород поглощается растущими аэробами, посеянными на одной половине среды, после чего начинается рост анаэробов, посев которых сделан на другой половине.

  • 1.Рост и размножение бактерий. Фазы размножения:
  • 1.Основные принципы культивирования бактерий:
  • 1.Искусственные питательные среды, их классификация. Требования, предъявляемые к питательным средам.
  • 3.Возбудители хламидиозов. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 1. Дисбиозы. Дисбактериозы. Препараты для восстанов­ления нормальной микрофлоры: пробиотики, эубиотики.
  • 1. Действие физических и химических факторов на микроор­ганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Влияние физических факторов.
  • 2. Серологические реакции, используемые для диагнос­тики вирусных инфекций.
  • 1.Понятие об инфекции. Условия возникновения инфекционного процесса.
  • 3.Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 3.Возбудитель сыпного тифа. Таксономия. Характеристика. Болезнь Брилля-Цинссера. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 3. Возбудитель клещевого сыпного тифа.
  • 1.Характеристика бактериальных токсинов.
  • 3.Возбудитель натуральной оспы. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика оспы.
  • 3. Классификация микозов (грибов). Характеристика. Роль в патологии человека. Лабораторная диагностика. Лечение.
  • 1.Микрофлора воздуха и методы ее исследования. Санитарно-показательные микроорганизмы воздуха.
  • 1.Основные принципы культивирования бактерий:

    Под культивированием понимают выращивание определенного вида, типа или клона микроорганизма, или смеси разных микроорганизмов на искусственных или естественных субстратах. культивирование производят на простых и сложных, жидких, полужидких или твердых.К простым средам относят мясопептонный бульон, мясопептонный агар, пептонную воду Сложные среды состоят из простых с определенными добавками (крови - кровяные среды, животной сыворотки - сывороточные среды, асцита - асцитические среды и т. д.). В зависимости от целей их делят на элективные, среды обогащения, дифференциально-диагностические и др.К элективным средам причисляют такие, на которых данный микроорганизм растет лучше других; эти последние либо вовсе не растут, либо растут с трудом. В качестве примера можно назвать среды Филдса, Мейера и Батчельдера, Туманского для выделения из организма животных и человека пастерелл; среду Бучина - для изоляции возбудителя дифтерии и др. Среды обогащения (накопления) позволяют изолировать и накопить определенный вид интересующего микроорганизма. В эту группу можно внести среды: Кауфмана, Мюллера, Килиани, среду с селенитом для изоляции кишечных, тифозных, паратифозных и дизентерийных микроорганизмов и многие другие. Дифференциально-диагностические среды позволяют окончательно дифференцировать вид изучаемого микроорганизма от сходного и составить его типичную характеристику. Таких сред много: с углеводами, для выяснения биохимических свойств; агар с кровью, выявляющий гемолитические способности; мясопептонная желатина - индикатор на протеолитическую активность; Наконец, консервирующие среды, в состав которых входят вещества (глицерин), позволяющие сохранить патогенные микроорганизмы живыми в исходном материале при его пересылке, и подавить рост сапрофитов в нем. Культивирование бактерий производится в термостате, для ме-зофильных микроорганизмов при 37° (или 28°), для психрофильных (холодолюбивых) при 20°, для термофильных (теплолюбивых) при 50-60°. Многие микроорганизмы нуждаются в нейтральной или щелочной реакции среды - рН 7,0, 7,2, 7,4; сильно щелочной реакции - рН 7,8, 8 или слабокислой - рН 6,8; в определенной вязкости среды: мясопептонный бульон, полужидкий (0,1-0,5%) агар, твердый (2-3%) агар; в определенном значении рН, о чем говорилось выше. Длительность культивирования разная. Для большинства бактерий достаточно 1-2 суток, для возбудителя сапа 6-8-10- 15 суток, для бруцелл типа suis и melitensis-15-20 суток. Выращивают анаэробов в анаэростатах или эксикаторах с вакуумом в 5-10 мм ртутного столба, в агаре столбиком, на среде Китт-Тароцци (бульон с кусочками печени) и др. На биофабриках для получения большого количества микробной массы бактерий выращивают в реакторах-котлах большой емкости. Культивирование производится при «продувании» среды стерильным воздухом, оттоке выросшей культуры и непрерывном поступлении в реактор заместительного количества свежей среды.

    2. Иммунокомпетентные клетки. Т- и В-лимфоциты, макрофаги . Т-лимфоциты выполняют следующие функции:являются основными эффекторами клеточного иммунитета;являются регуляторами воспаления, иммунных реакций и кроветворения;участвуют в процессах репаративной и физиологической регенерации различных тканей.Среди Т-лимфоцитов различают две субпопуляции клеток – CD4+-клeтки и СD8+-клетки. По функциональным характеристикам в популяции Т-лимфоцитов выделяют Т-хелперы гуморального иммунитета, Т-хелперы клеточного иммунитета, Т-супрессоры, Т-цитотоксические клетки. В-лимфоциты – это преимущественно эффекторные иммунокомпетентные клетки, на долю которых приходится около 15% всей численности лимфоцитов. Выделяют две субпопуляции В-лимфоцитов: «обычные» В-клетки, не имеющие маркера CD5, и CD5 + В1-лимфоциты. Зрелые В-лимфоциты и их потомки- плазматические клетки (плазмоциты) являются антителопродуцентами. Их основным продуктом являются иммуноглобулины. Кроме того, В-лимфоциты являются профессиональными АПК (антигенпрезентующая клетка). Они участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа. Потомками В-лимфоцитов являются клетки иммунологической памяти и плазматические клетки. Основные морфологические признаки последних – обширная цитоплазма, развитый эндоплазматический ретикулум и аппарат Гольджи с большим количеством рибосом. Активно синтезирующий плазмоцит живет недолго, не более 2-3 суток.

    Функциональной активностью В-лимфоцитов управляют растворимые антигены и иммуноцитокины Т2-хелпера, макрофага и других клеток, например ИЛ-4,5,6.В зависимости от строения Т-клеточного антигенного рецептора (TCR) и функциональной направленности сообщество Т-лимфоцитов может быть разделено на отдельные группы.Различают два типа TCR: альфа-бетта и гамма-дельта. Первый тип – гетеродимер, который состоит из двух полипептидных цепей – альфа и бета; он характерен для традиционных Т-лимфоцитов, известных как Т-хелперы и Т-киллеры. Второй тип обнаруживается на поверхности особой популяции гамма-дельта Т-лимфоцитов. Профессионально Т-лимфоциты также разделяют на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа (в основном активирующую) выполняют Т-хелперы. Предполагалось существование Т-супрессоров, которым приписывали функцию торможения развития иммунной реакции (супрессии). О Эффекторную функцию осуществляют цитотоксические лимфоциты: Т-киллеры и естественные киллеры. В организме Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствительность замедленного типа, трансплантационный иммунитет, противоопухолевый иммунитет и т.д.), определяют силу и продолжительность иммунной реакции. Их созреванием, дифференцировкой и активностью управляют цитокины. Т-киллер анализирует клетки собственного организма в поисках измененной, т.е. отличной от собственной, структуры комплекса антиген-МНС I класса. Мутантные клетки, клетки, пораженные вирусом, или клетки аллогенного трансплантата несут на своей поверхности такие признаки генетической чужеродности. Поэтому они являются мишенью Т-киллера.Т-киллер устраняет клетки-мишени путем антителонезависимой клеточно-опосредованной цитотоксичности, для чего синтезирует ряд токсических субстанций: перфорин, гранзимы и гранулизин.Перфорин - токсический белок, который синтезируют цитотоксические лимфоциты – Т-киллеры и естественные киллеры.Т-киллеры обеспечивают в организме антителонезависимую клеточно-опосредованную цитотоксичность, формирование Т-клеточной иммунологической памяти и гиперчувствительности замедленного типа. Кроме того, активированный Т-киллер синтезирует гамма-ИФН и ФНО (фактор некроза опухолей), стимулирующие иммунное воспаление

    1.Типы и механизмы питания бактерий .Поступление питательных веществ в клетку происходит по всей поверхности, которая очень велика по сравнению с общей величиной бактерией; необыкновенная быстрота метаболических процессов; высокая адаптация к меняющимся условиям среды. По усвоению необходимых органогенов:углерод:-аутотрофы(окисление минеральных соединений); -гетеротрофы(органические соединения); Азот:-аминоаутотрофы(молекулярный азот воздуха); -аминогетеротрофы(азот из органических соединений- сложных белков); По источникам энергии: - фототрофы:бактерии для которых источник энергии солнечный свет; -хемотрофы:бактерии получают энергию за счет химического окисления веществМеханизмы питания. Поступление различных веществ в бак­териальную клетку зависит от величины и растворимости их мо­лекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая мак­ромолекулы массой более 600 Д. Основным регулятором поступ­ления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения пи­тательных веществ в бактериальную клетку : это пассивная диффу­зия, облегченная диффузия(при большой концентрации веществ вне клетки,чем внутри), активный транспорт,(наблюдается при низких концентрациях субстрата в окруж.среде) транслокация радикалов(активный перенос химически измененных молекул)

    2. Реакция связывания комплемента. Механизм. Компоненты. Применение.Р СК широко используют для лабораторной диагностики венерических болезней, риккетсиозов, вирусных инфекций. Реакция протекает в две фазы. Первая фаза - взаимодействие антигена и антител при обязательном участии комплемента. Вторая - выявление результатов реакции при помощи индикаторной гемолитической системы (эритроциты барана и гемолитическая сыворотка). Разрушение эритроцитов гемолитической сывороткой происходит только в случае присоединения комплемента к гемолитической системе. Если же комплемент адсорбировался ранее на комплексе антиген-антитело, то гемолиз эритроцитов не наступает.

    При наличии в исследуемой сыворотке антител, комплементарных антигену, образующийся комплекс антиген-антитело связывает (адсорбирует) на себе комплемент. При добавлении гемолитической системы гемолиза не происходит (задержка гемолиза), т.к. весь комплемент израсходован на специфическую связь комплекса антиген-антитело, а эритроциты остались неизменными.При отсутствии в сыворотке антител, комплементарных антигену, специфический комплекс антиген-антитело не образуется и комплемент остается не связанным. Поэтому при добавлении гемолитической системы комплемент присоединяется к ней. Результатом реакции в данном случае будет гемолиз эритроцитов - в пробирках образуется так называемая «лаковая» кровь.РСК позволяет выявить антитела к любому штамму одного и того же серотипа вируса. Диагностическое значение имеет четырехкратное увеличение титра антител в парных сыворотках (в период эпидемии гриппа) и двукратное нарастание в сыворотках крови больных при характерной клинической картине.

    3.Стафилококки. Таксономия. Характеристика. Микробиологическая диагностика заболеваний, вызываемых стафилококками. Специфическая профилактика и лечение. 1) семейство - Micrococcaceae2) роды Mircococcus, Staphylococcus (имеет патогенные виды), Planococcus (подвижные, не патогенные обитают в морской воде)3) виды рода стафилококков 19, основные, связанные экологически с организмом человека - 3: S. aureus (золотистый - патогенный), S. epidermidis (кожный или эпидермальный - условно патогенный), S. saprophyticus (сапрофитный - может вызывать заболевание).морфология - шаровидной формы, жгутиков и спор не имеют, могут образовывать микрокапсулы, бывают полиморфными, образуют L-формы под действием антибиотиков (пеницилин);тинкториальные свойства – Грам+;

    культуральные свойства - к средам не требовательные, так как имеют высокую ферментативную активность. Расщепляют углеводы, глюкозу, манит до кислоты и газа; в анаэробных условиях расщепляют липиды, белки, выделяют каталазу. ДДС (дифференциально-диагностическая среда) - для стафилококков желточно-солевои агар (ЖСА). Основа - МПА. Субстрат - лецитин яичного желтка, 10-15% NaCI - селективный фактор, подавляющий рост других микроорганизмов. S. aureus вокруг колоний образует зону расщепления лецитина - вид облака. Кроме того S. aureus образуют желтый внутриклеточный пигмент. Колонии стафилокока – «S» -формы - круглые, гладкие. Ровный край, блестящие, бывают золотистые, с лимонным пигментом или белые колонии.ферментативные свойства Стафилококки обладают значительной биохимической активностью: расщепляют глюкозу, сахарозу, мальтозу, лактозу, маннит с образованием кислоты. Ферментация маннита в анаэробных условиях характеризует вид S, aureus. Протеолитическая активность стафилококков проявляется в способности выделять сероводород при разложении белков и разжижать желатин в течение 4-5 суток в виде воронки по ходу укола.АГ - свойства - У стафилококков выделяют более 50 антигенных субстанций, разделяемых на родовые, видовые и типовые Аг. . Видоспецифичными Аг стафилококков могут служить тейхоевые кислоты. Для S. aureus видоспецифичным Аг также является белок А. Патогенность – стафилококки вызывают гнойно-воспалительные процессы различной локализации, местного характера и генерализованные - сепсис, септикопиемию. Заболевания, вызываемые стафилококками: пиодермия, фурункулы, карбункулы, лимфодениты, бронхиты, пневмония, отиты, тонзилиты, менингиты, миокардиты, холециститы, остеомиелиты и др. Особенно опасными являются больничные или госпитальные инфекции.Факторы патогенности стафилококков. Выделяют три группы (токсины, ферменты патогенности и поверхностные структуры):

    1) токсины Мембранотоксины (стафилолизины, или гемолизины) золотистого стафилококка.

    Энтеротоксины А, В, C1-3, D, Е - термостабильные низкомолекулярные белки. Именно эти токсины ответственны за развитие пищевых отравлений. Наиболее часто регистрируют интоксикации, вызываемые энтеротоксинами А и D. Проявляют свойства суперантигена. 2) ферменты патогенности - это экзоферменты:плазмокоагулаза - ; фибринолизин - ;лецитиназа - ДНКаза; гиалуронидаза - фактор распространения;другие ферменты - липазы, фосфатазы, протеиназы.3) поверхностные структуры - протеин или белок A мешает фагоцитозу, уменьшает опсонизацию, соединяется с fc фрагментами Ig, выполняет роль капсулы. Чувствительность к физическим и химическим факторам – стафилококки очень устойчивы к высушиванию, могут сохраняться в гное очень долго (до нескольких месяцев). . Погибают при прямом воздействии солнечного света в течение 10-12 ч. Они довольно устойчивы к нагреванию- при 70-80 0 погибают за 20-30 мин, при 150 0 - за 10 мин; сухой жар убивает их за 2 ч. Бактерии менее устойчивы к действию дезинфицирующих средств, но резистентны к чистому этанолу.Источник инфекции Основным источником стафилококковой инфекции являются люди, больные стафилококковой ангиной, носители стафилококка на слизистых оболочках, а также загрязненные стафилококками предметы Пути передачи заражения : 1) экзогенный - чаще всего воздушно-капельный, может быть алиментарный и парэнтеральный;2) эндогенный - активация собственной микрофлоры под действием переохлаждения, перегревания, стресса, вирусных инфекций и т.д. Патогенез. Стафилококки, как и все УПМ, вызывают оппортунистическую инфекцию.Иммунитет.

    Большое значение имеют факторы НФЗ (неспецифические факторы защиты), особенно - фагоцитоз;Постинфекционный иммунитет – клеточно-гуморальный, нестойкий и ненапряженный, как при всех оппортунистических инфекциях.Лабораторная диагностика. В окрашенных мазках отделяемого из очага поражения видны типичные стафилококки. Но при микроскопировании мазка практически невозможно отличить непатогенные (S. epidermidis, S. saprophyticus) микроорганизмы от патогенных (S. aureus). Для этой цели используют культуральные методы исследования. При посеве материала на чашки с ЖСА через 24-48 ч при инкубации образуются типичные колонии (круглые, гладкие, выпуклые), которые различные пигменты: S. aureus - золотисто-желтый, S. epidermidis - бело-мраморный. Наряду с реакцией плазмокоагуляции, большое значение приобрела еще одна важная способность стафилококков, характеризующая их потенциальную патогенность, -дезоксирибонуклеазная активность. Стафилококки, выделенные из патологического материала, как правило, обладают ДНК-азой. Коагулазопозитивные штаммы, полученные от носителей, могут не иметь этого фермента, и обычно отсутствие дезоксирибонуклеазной активности сочетается с низкой биохимической способностью и атоксигенностью таких культур стафилококков. Типирование бактериофагами золотистого стафилококка достаточно широко применяют в клинической эпидемиологии. Лечение стафилококковых инфекций Специфическое (этиотропное) лечение проводится антибиотиками широкого спектра действия, используются полусинтетические пенициллины (оксациллин), цефалоспорины с обязательным учетом антибиотикограммы. При тяжёлом или хроническом течении следует применять антистафилококковый иммуноглобулин. Существует стафилококковый бактериофаг, обладающий способностью специфически лизировать стафилококковые бактерии. Специфическая профилактика: 1) получен препарат из экзотоксина - анатоксин, его используют для вакцинации беременных женщин, у них возникает антитоксический иммунитет, который передается через плаценту ребенку. 2) стафилококковый гамма-глобулин - получают из крови доноров, иммунизированных анатоксином, создают пассивный иммунитет (используют так же и для лечения).3) стафилококковая аутовакцина - получают из штаммов стафилококков, выделенных от больных.

    1. Принципы и методы выделения чистых культур бактерий :Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты - биовары. Биовары, различающие­ся по биохимическим свойствам, называют хемоварами, по анти­генным свойствам - сероварами, по чувствительности к фагу - фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.определя­ют на дифференциально-диагностических средах.Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.Чистую культуру бактерий получают для проведения диагно­стических исследований - идентификации, которая достигается путем определения морфологических, культуральных, биохимиче­ских и других признаков микроорганизма. 1-й день - получение изолированных колоний. Каплю исследуемого материала петлей, пипеткой наносят на поверхность агара в чашке Петри.Шпателем втирают материал в поверхность среды;не прожигая производят посев на 2 -й,затем на 3-й чашке. 2-й день -изучают рост микробов на чашке. В 1-й чашке сплошной рост - выделить изолированную колонию не удается. На поверхности агара во 2 и 3 чашке вырастают изолированные колонии.Нужную колонию отмечают со стороны дна чашки и пересевают на скошенный агар. Посевы ставят в термостат. 3 -й день - изучают характер роста на скошенном агаре. Делают мазок, окрашивают его и убедившись в том что культура чистая, приступают к ее изучению.Выделенная из определенного источника и изученная культура,называется штаммом.

    2.Иммуноферментный анализ (ИФА) В основе иммуноферментного анализа лежит известная иммунная реакция антигена и антитела. Один из этих реагентов является определяемым веществом, а другой - узнающим, обладающим известной стандартной специфичностью (избирательностью) по отношению к определяемому веществу.Для выявления образовавшихся иммунных комплексов (антиген-антитело) используется фермен т, которым предварительно метится узнающий компонент (антиген или антитело). Сам фермент, естественно, не виден, поэтому визуализация присутствия вещества, определяемого методом ИФА, достигается применением посредника - хромогена . Это особое химическое соединение, которое хорошо растворимо в воде, и раствор которого бесцветен. Превращение бесцветного хромогена в цветное вещество хромофор происходит под действием фермента, для которого хромоген является субстратом.

    3. ВИЧ-инфекция. Таксономия, характеристика возбудителей. Лабораторная диагностика, профилактика. Вирус иммунодефицита человека (ВИЧ ) - возбудитель своеобразной инфекции, проявляющейся развитием прогрессирующих нарушений иммунного реагирования в результате длительного циркулирования вируса в лимфоцитах, макрофагах и клетках нервной ткани.Следствие ВИЧ-инфекции - синдром приобретённого иммунодефицита (СПИД ). ВИЧ входит в состав подсемейства Lentivirinae семейства Retroviridae. Характерные особенности ретровирусов - уникальное строение генома и наличие обратной транскриптазы (РНК-зависимая ДНК-полимераза). Обратная транскриптаза (или ревертаза) обеспечивает обратную направленность потока генетической информации - не от ДНК к РНК, а наоборот, от РНК к ДНК, в связи с чем семейство и получило своё название 1от англ. retro, обратно].Геном вич образует две идентичные молекулы однонитевой несегментированной +РНК. Репродуктивный цикл вич уникален, так как при его реализации образуются промежуточные продукты-интермедиаты ДНК.В настоящее время выделяют два типа вирусов: ВИЧ-1 (HIV-1)- основной возбудитель ВИЧ-инфекции, ВИЧ-2 (HIV-2) - менее вирулентный аналог ВИЧ-I, редко вызывающий типичные проявления СПИДа; его выделяют преимущественно в Западной АфрикеВИЧ .ВИЧ-инфекция - типичный антропоноз, у животных воспроизвести заболевание не удаётся. Резервуар вируса вич-инфекции - инфицированный человек. Возбудитель передаётся трансмиссивно.Основной фактор передачи вич-инфекции - половые контакты (вирус проникает в кровь через повреждения слизистых оболочек). Второй по значимости фактор передачи вируса вич-инфекции - использование одних и тех же игл и шприцев наркоманами.ВИЧ чувствителен к действию высоких температур (при 56 X инактивируется за 30 мин, при 70-80 °С - через 10 мин), этанола, эфира, ацетона и многих дезинфектантов. В крови и других биологических материалах при комнатной температуре вирус сохраняет жизнеспособность в течение нескольких сутокЗ .Главные антигены вируса иммунодефицита человека - поверхностные gp41 и gpl20, a также сердцевинный (ядерный) gp24.Патогенез вич-инфекции поражений обусловливает селективное поражение СD4+-клеток, так как вирус использует молекулу CD4 в качестве рецептора.Мишени для вич-инфекции - Т-хелперы, моноциты, макрофаги и родственные клетки, экспрессирующие СD4-подобные молекулы. Заражение макрофагов также возможно при поглощении иммунных комплексов, содержащих вирус.Особенность патогенеза ВИЧ-инфекции - способность избегать действия иммунных механизмов за счёт интеграции его генома в ДНК клеток хозяина при минимальной экспрессии вирусных генов, а также антигенной изменчивости, обусловленной рабочими ошибками обратной транскриптаТечение спида напоминает клиническую картину многих хорошо известных инфекционных заболеваний. Её своеобразие заключается лишь в тропности возбудителя к определённым клеткам организма, что отличает инфекционные заболевания друг от друга. Инкубационный период вич-инфекции продолжается 2-4 нед, но может затягиваться до нескольких месяцев. Стадия первичных проявлений вич-инфекции продолжается от нескольких дней до 1 -2 мес. Стадия вторичных проявлений вич-инфекции (латентный период) продолжается от нескольких месяцев до 8-10 лет. Характерны иммунные расстройства, вызываемые ВИЧ. Поздняя ВИЧ-инфекция проявляется развитием оппортунистических инфекций, развивающихся вследствие прогрессирующего снижения количества С04+-клеток менее 50/мм3. Наиболее типичны; пневмоцистная пневмония, токсоплазмоз, кандидоз (патогномоничны поражения пищевода и дыхательного тракта), криптококкоз, гистоплазмоз, атипичные микобактери-озы, генерализованные ЦМВ и герпетические инфекции. Поздняя стадия заканчивается развитием СПИДа . СПИД . В результате некорректного употребления медицинских терминов, особенно в средствах массовой информации, понятия ВИЧ и СПИД часто ошибочно рассматривают как тождественные.Основу диагностики вич составляет выявление вирусспецифических AT и Аг вируса вич на различных стадиях ВИЧ-инфекции.AT к Аг вич gp41, gpl20 и gp24 выявляют начиная с периода сероконверсии, стадии первичных проявлений и в течение всех последующих стадийAг gp41 и gpl20 вич выявляют в стадии первичных проявлений и в стадии поздней ВИЧ-инфекции.Основные диагностические методы вич - ИФА и иммуноблот.ИФА - основной метод диагностики вич . Он позволяет выявить вирусные Аг и AT к ним. Поиск AT менее предпочтителен для ранней диагностики вич , так как у 95% инфицированных AT появляются лишь через 2-5 мес.Вестернблот-(иммуноблот-)тест вич применяют для подтверждения факта ВИЧ-инфекции. Метод позволяет обнаружить специфические AT в сыворотке и является только подтверждающим тестом.Результаты рассматривают как положительные после обнаружения AT к р24, р31, а также к gp41 либо к gp120.Альтернативные подходы к ранней диагностике ВИЧ-инфекции . Методы, выявляющие AT, практически неприемлемы для диагностики ВИЧ-инфекции у новорождённых, так как материнские IgG могут присутствовать в сыворотке крови ребёнка до 1 года и более.Альтернативные диагностические подходы вич включают выделение вируса in vitro и выявление генетического материала возбудителя с помощью ПЦР; результаты положительны у 35-55% инфицированных новорождённых в возрасте менее 1 нед и у 90-100% детей в возрасте 3-6 мес.

    1.Особенности физиологии грибов: Грибы относятся к эукариотам, т.е. по строению клеток сходны с растениями и животными. Это означает, что их клет­ки структурированы (компартментализованы) благодаря си­стеме внутриклеточных мембран, которые формируют мор­фологически оформленное ядро, разветвленный эндоплазматический ретикулум, митохондрии и другие органеллы. Ядро содержит набор хромосом, реплицирующихся путем митоза. Подобно всем эукариотам для плазматической мембраны гри­бов характерно высокое содержание стеролов (главным об­разом - эргостерола). Кроме того, грибы способны к поло­вому размножению (образование половых спор). Все грибы-аэробы, и лишь немногие способны выживать за счет бро­жения.Вместе с тем, грибы устроены гораздо примитивнее, чем «классические» (высшие) эукариоты. Это прежде всего про­является в низкой специализации клеток, из которых они со­стоят. Даже у многоклеточных грибов (например, плесеней) каждая отдельная клетка способна дать начало целому орга­низму. В отличие от высших эукариот большинство грибов гаплоидны (из «медицинских» грибов диплоидны только Candida). В связи с этим грибы (наряду с простейшими и водорослями) иногда называют «протистами», т.е. низшими эукариотами. В старых классификациях грибы относили к «бесхлорофильным растениям». Однако это сходство оказалось фор­мальным, так как по ряду базисных признаков грибы радикаль­но отличаются от растений. Они являются хемотрофами, из­влекая энергию из химических связей продуктов питания (по­этому грибы великолепно растут в темноте); растения - фототрофы, преобразующие энергию солнечного света в макро­эрги (АТФ) путем фотосинтеза. Грибы - гетеротрофы, т.е. их метаболизм базируется на утилизации органических соедине­ний обычно «мертвого» органического материала (большинство грибов - сапрофиты); растения - классические автотрофы, воспроизводящие себя за счет неорганических форм угле­рода (С0 2) и других органогенов.

    2.Иммунологическая память.Иммунологическая толерантность: Иммунологическая память. При повторной встрече с антигеном орга­низм формирует более активную и быструю иммунную реакцию - вторичный иммунный ответ. Этот феномен получил название имму­нологической памяти. Иммунологическая память имеет высо­кую специфичность к конкретному анти­гену, распространяется как на гуморальное, так и клеточное звено иммунитета и обус­ловлена В- и Т-лимфоцитами. Она обра­зуется практически всегда и сохраняется годами и даже десятилетиями. Благодаря ней наш организм надежно защищен от повторных антигенных интервенций.На сегодняшний день рассматривают два наиболее вероятных механизма формирова­ния иммунологической памяти. Один из них предполагает длительное сохранение анти­гена в организме. Этому имеется множество примеров: инкапсулированный возбудитель туберкулеза, персистирующие вирусы кори, полиомиелита, ветряной оспы и некоторые другие патогены длительное время, иногда всю жизнь, сохраняются в организме, под­держивая в напряжении иммунную систему. Вероятно также наличие долгоживущих де­ндритных АПК, способных длительно сохра­нять и презентировать антиген.Другой механизм предусматривает, что в про­цессе развития в организме продуктивного им­мунного ответа часть антигенореактивных Т- или В-лимфоцитов дифференцируется в малые по­коящиеся клетки, или клетки иммунологической памяти. Эти клетки отличаются высокой спе­цифичностью к конкретной антигенной детер­минанте и большой продолжительностью жизни (до 10 лет и более). Они активно рециркулируют в организме, распределяясь в тканях и органах, но постоянно возвращаются в места своего про­исхождения за счет хоминговых рецепторов. Это обеспечивает постоянную готовность иммунной системы реагировать на повторный контакт с антигеном по вторичному типу.

    Феномен иммунологической памяти широко используется в практике вакцинации людей для создания напряженного иммунитета и под­держания его длительное время на защитном уровне. Осуществляют это 2-3-кратными при­вивками при первичной вакцинации и перио­дическими повторными введениямивакцинно­го препарата - ревакцинациями .

    Однако феномен иммунологической памяти имеет и отрицательные стороны. Например, повторная попытка трансплантировать уже однажды отторгнутую ткань вызывает быст­рую и бурную реакцию - криз отторжения. Иммунологическая толе­рантность - явле­ние, противоположное иммунному ответу и иммунологической памяти. Проявляется она отсутствием специфического продуктивного иммунного ответа организма на антиген в связи с неспособностью его распознавания.В отличие от иммуносупрессии имму­нологическая толерантность предполагает изначальную ареактивность иммунокомпетентных клеток к определенному антигену.

    Иммунологическую толерантность вызы­вают антигены, которые получили название толерогены. Ими могут быть практически все вещества, однако наибольшей толерогенностью обладают полисахариды.

    Иммунологическая толерантность быва­ет врожденной и приобретенной. Примером врожденной толерантности является отсутс­твие реакции иммунной системы на свои собственные антигены. Приобретенную толе­рантность можно создать, вводя в организм вещества, подавляющие иммунитет (иммунодепрессанты), или же путем введения антигена в эмбриональном периоде или в первые дни после рождения индивидуума. Приобретенная толерантность может быть активной и пассив­ной. Активная толерантность создается пу­тем введения в организм толерогена, который формирует специфическую толерантность. Пассивную толерантность можно вызвать ве­ществами, тормозящими биосинтетическую или пролиферативную активность иммунокомпетентных клеток (антилимфоцитарная сыворотка, цитостатики и пр.).Иммунологическая толерантность отличает­ся специфичностью - она направлена к строго определенным антигенам. По степени рас­пространенности различают поливалентную и расщепленную толерантность. Поливалентная толерантность возникает одновременно на все антигенные детерминанты, входящие в со­став конкретного антигена. Для расщепленной, или моновалентной, толерантности характер­на избирательная невосприимчивость каких-то отдельных антигенных детерминант.Степень проявления иммунологической толе­рантности существенно зависит от ряда свойств макроорганизма и толерогена.Важное значение в индукции иммуноло­гической толерантности имеют доза анти­гена и продолжительность его воздействия . Различают высокодозовую и низкодозовую толерантность. Высокодозовую толерантность вызывают введением больших количеств вы­сококонцентрированного антигена. Низкодозовая толерантность, наоборот, вызывается очень малым количеством вы-сокогомогенного молекулярного антигена. Механизмы толерантности многообразны и до конца не расшифрованы. Известно, что ее основу составляют нормальные процессы регуляции иммунной системы. Выделяют три наиболее вероятные причины развития имму­нологической толерантности:1. Элиминация из организма антигенспецифических клонов лимфоцитов.2. Блокада биологической активности им-мунокомпетентных клеток.3. Быстрая нейтрализация антигена анти­телами.

    3.Возбудители коклюша и паракоклюша. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.Коклюш - острое инфекционное заболевание преимущественно детского возраста, сопровождающееся характерным судорожным кашлем.Таксономия. Возбудитель коклюша Bordetella pertussis и паракоклюша Bordetella parapertussis относятся к роду Bordetella, семейства Alcoligenaceae.Морфология и тинкториальные свойства . Бактерии имеют вид палочек длиной до 2 мкм, овоидной формы, неподвижны, не образуют спор. При специальной окраске у возбудителя коклюша обнаруживается нежная капсула. Легко окрашиваются обычными анилиновыми красителями, грамотрицательны.Культивирование и ферментативные свойства. Бордетеллы являются аэробами, культивируются на специальных питательных средах: картофельно-глицериновом агаре с 20-25% крови человека (среда Борде-Жангу) и казеиново-угольном агаре (КУА). Для подавления роста сопутствующей флоры к средам добавляется пенициллин. Коклюшные и паракоклюшные бактерии на среде Борде-Жангу образуют мелкие блестящие выпуклые колонии, напоминающие капельки ртути и серовато-кремового цвета колонии на КУА. Оба вида бактерий обладают гемолитическими свойствами. Колонии бактерии паракоклюша по внешнему виду очень похожи на бактерии коклюша, но они более крупные по размерам и появляются раньше, чем коклюшные колонии. В. pertussis способны к диссоциации: свежевыделенные культуры находятся в S-форме (I фаза) с характерными морфологическими и биологическими свойствами; II и III фазы являются переходными; бактерии в IV фазе относятся к R-формам и выделяются от больных к концу заболевания. Положительный ответ при бактериологической диагностикекоклюша выдается только при обнаружении микроба в I фазе.Антигенная структура и токсинообразование . Бактерии имеют сложную антигенную структуру:B. pertussis имеет восемь агглютиногенов, ведущими из которых являются 1.2.3. В зависимости от наличия ведущихагглютиногенов, принято выделять четыре серотипа (1.2.0; 1.0.3; 1.2.3 и 1.0.0). Причем в последнее десятилетие преобладающими являются серовары 1.2.0 и 1.0.3, выделяющиеся от привитых детей, имеющих легкие и атипичные формы заболевания. В то же время серовары 1.2.3 выделяются от непривитых детей прежде всего раннего возраста, у которых болезнь протекает чаще в тяжелой и реже - в среднетяжелой форме. Содержат биологически активные субстанции, обладающие токсическими свойствами : термолабильная дермонекротическая субстанция, термостабильная (эндотоксин), гемагглютинин,

    гистаминсенсибилизирующий фактор,протективный (защитный) антиген лимфоцитозстимулирующий фактор.Резистентность . Во внешней среде бактерии малоустойчивы. В сухой мокроте сохраняются несколько часов. При температуре 55-60 °С погибают в течение 15- 30 мин, чувствительны к дезинфицирующим веществам и к действию солнечных лучей.Входными воротами инфекции являются слизистые оболочки дыхательных путей. Иммунитет . После перенесенного коклюша остается пожизненный, стойкий.Механизм передачи - аэрозольный; путь передачи - воздушно-капельный. Лабораторная диагностика . Бактериологический метод - выделение B. pertussis из слизи задней стенки глотки, которую забирают натощак или спустя 2–3 ч после еды. .Применяют два способа: метод «кашлевых пластинок» и «заднеглоточного тампона». Посев осуществляют на казеиново-угольный агар. Идентификация и дифференциация коклюшных и паракоклюшных бактерий осуществляются по культуральным, биохимическим и антигенным свойствам. Серологические методы (РПГА, РА, РНГА) могут быть использованы для диагностики коклюша на поздних сроках заболевания или для эпидемиологического анализа (при обследовании очагов инфекции). Иммуноферментный анализ (ИФА) позволяет определить содержание антител класса Ig М (в ранние сроки) и Ig G (в поздние сроки заболевания).кспресс-методы диагностики коклюша (иммунофлюоресцентный, латексной микроагглютинации).ПЦР Профилактика Для активной иммунизации против коклюша применяют адсорбированную коклюшно-дифтерийно-столбнячную вакцину (АКДС), Вакцинацию проводят с 3-месячного возраста троекратно с интервалом 1½ мес. При необходимости интервал между прививками можно удлинить до 6 месяцев, а в исключительных случаях - до 12 месяцев. Ревакцинацию проводят 1 раз через 1½-2 года после законченной вакцинации. Вторая ревакцинация против коклюша не проводится.

    1.Ферменты бактерий: Питание микроорганизмов осуществляется благодаря наличию в клетке различных ферментов, катализирующих все жизненно необходимые реакции. Ферменты - это биологические катализаторы белковой природы. Микробная клетка, подобно клеткам высших организмов, оснащена достаточно активным ферментативным аппаратом. Ферменты микроорганизмов обладают теми же свойствами и функциями, что и ферменты высших организмов. В соответствии с катализирующими реакциями все ферменты разделяют на шесть классов:Оксидоредуктазы -катализируют реакции окисления-восстановления. Трансферазы - катализируют реакции переноса различных групп от донора к акцептору. Гидролазы - катализируют разрыв связей в субстратах с присоединением воды.Лиазы - катализируют реакции разрыва связей в субстрате без присоединения воды или окисления.Изомеразы - катализируют превращения в пределах одной молекулы (внутримолекулярные перестройки).Лигазы (синтетазы) - катализируют присоединение двух молекул с использованием энергии фосфатных связей.Ферменты бактерий подразделяются на экз о- и эндоферменты. Эндоферменты функционируют только внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена. Экзоферменты выделяются клеткой в среду и катализируют реакции гидролиза сложных органических соединений на более простые, доступные для ассимиляции микробной клеткой. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов. В зависимости от условий образования ферментов их разделяют на конститутивные и индуцибельные. Конститутивными н азывают ферменты, синтезируемые клеткой вне зависимости от субстрата, на котором развиваются бактерии. Например, ферменты гликолиза. Индуцибельные ферменты синтезируются в клетке только под влиянием соответствующего субстрата,находящегося в питательной среде,и когда микроорганизм вынужден его усваивать.Например,если бактерии,не вырабатывающие в обычных условиях фермента амилазы,расщепляющей крахмал,засеять на питательную среду где единственный источник углерода - крахмал,то они начинают синтезировать этот фермент.эти ферменты помогают клетке приспособиться к изменившимся условиям существования. Наряду с ферментами обмена многие патогенные бактерии вырабатывают ферменты агрессии ,которые служат для преодаления естественных защитных барьеров макроорганизма и являются факторами патогенности. К ним относятся:коллагеназа,дезоксирибонуклеаза,нейраминидаза,коагулаза,липаза,гиалуронидаза,фибринолизин.

    2. Санитарно-микробиологическое исследование почвы. Микробное число, коли-титр, перфрингенс-титр почвы. Микробное число почвы - общее количество микроорганизмов, содержащихся в 1 г почвы. Посев почвенной суспензии производят на МПА в чашки Петри по 1 мл из каждого разведения. Затем в чашки выливают по 7-10 мл расплавленного и остуженного до 45 ° С агара. Посевы инкубируют при 28-30 ° С в течение 72 ч и подсчитывают количество выросших колоний. Если на чашке Петри вырастает более 150 колоний, то подсчет ведется на ¼ площади с последующим перерасчетом на всю площадь. Из суммы колоний, подсчитанных на всех чашках Петри, выводится среднее арифметическое и затем определяют количество микроорганизмов в 1 г почвы с учетом разведений.Определение бактерий группы кишечной палочкиКоли-индекс - количество жизнеспособных E . coli в 1 г почвы.При анализе малозагрязненных почв используют метод мембранных фильтров. При предполагаемой невысокой степени фекального загрязнения рекомендуется применение титрационного метода. При высокой степени фекального загрязнения рекомендуется метод прямого посева почвенной суспензии (1:10) на среду Эндо.Перфрингенс-титр почвы - наименьшее весовое количество почвы, выраженное в граммах, в котором обнаруживается жизнеспособная клетка C . perfringens .Определение перфрингенс-титра является важным критерием для санитарной оценки почвы и ее самоочищения, так как в почве, загрязненной фекалиями, уже через 4-5 мес эшерихии исчезают, а C . perfringens обнаруживаются в титре 0,01. Перфрингенс-титр дает возможность судить о давности фекального загрязнения. Из приготовленных разведений почвенной суспензии по 1 мл переносят в два параллельных ряда пробирок. Один ряд прогревают при 80 ° С 15 мин. Затем во все пробирки наливают по 9-10 мл расплавленной и охлажденной до 45 ° среды Вильсона-Блер. Инкубацию посевов проводят при 43 ° 24 ч, но уже через 2-3 ч при положительном результате можно наблюдать в толще агара образование круглых колоний черного цвета. В мазках приготовленных из колоний видны характерные грамположительные палочки.

    1.Особенности физиологии простейших: К простейшим (Protozoa) относится свыше 15000 видов животных,

    2.Классы иммуноглобулинов и их характеристика: Антитела (Ат) - эффекторные молекулы гуморального иммунитета.Антитела также называют «иммуноглобулины». Выделяют 5 классов AT: IgA, IgD, IgE, IgG и IgM .Молекулы IgG, IgD и IgE представлены мономерами, IgM - пентамерами; молекулы IgA в сыворотке крови - мономеры, а в экскретируемых жидкостях (слёзная жидкость, слюна, секреты слизистых оболочек) - димеры. IgM синтезируются при первичном попадании Аг в организм. Пик образования приходится на 4-5-е сутки с последующим снижением титра. Образование IgM к некоторым Аг (например, жгутиковым Аг бактерий) осуществляется постоянно. К IgM относят значительную часть AT, вырабатывающихся к Аг грамотрицательных бактерий. Наличие IgM к Аг конкретного возбудителя указывает на острый инфекционный процесс. Молекула IgM - пентамер; пять субъединиц соединены J-цепью [от англ. joining, связывающий], в результате чего молекула IgM приобретает 10 Аг-связывающих участков. Молекулы IgM опсонизируют, агглютинируют, преципитируют и лизируют содержащие Аг структуры, а также активируют систему комплемента по классическому пути (для комплементзависимого лизиса бактерии достаточно одной молекулы IgM).Иммуноглобулин G (IgG) - основной класс AT (до 75% всех Ig), защищающий организм от бактерий, вирусов и токсинов. После первичного контакта с Аг синтез IgM обычно сменяется образованием IgG. Максимальные титры IgG при первичном ответе наблюдают на 6-8-е сутки. Обнаружение высоких титров IgG к Аг конкретного возбудителя указывает на то, что организм находится на стадии реконвалесценции или конкретное заболевание перенесено недавно. В особо больших количествах IgG синтезируется при вторичном ответе.

    IgG представлены 4 подклассами: IgG1, IgG2, IgG3 и IgG4; их относительное содержание (в %) составляет соответственно 66-70, 23, 7-8 и 2-4. IgG непосредственно участвуют в реакциях иммунного цитолиза, реакциях нейтрализации, а также усиливают фагоцитоз, действуя как опсонины и связывая рецепторы Fc-фрагмента в мембране фагоцитирующих клеток (в результате этого фагоциты эффективнее поглощают и лизируют микроорганизмы).

    Только IgG способны проникать через плаценту, что обеспечивает формирование у плода пассивного иммунитета. Иммуноглобулины А (IgA) циркулируют в сыворотке крови (составляет 15-20% от всех Ig), а также секретируются на поверхность эпителия. Присутствуют в слюне, слёзной жидкости, молоке и на поверхности слизистых оболочек.

    AT класса IgА усиливают защитные свойства слизистых оболочек пищеварительного тракта, дыхательных, половых и мочевыделительных путей. В сыворотке крови IgA циркулируют в виде двухвалентных мономеров; в секретируемых жидкостях преобладают четырёхвалентные димеры, содержащие одну J-цепь и дополнительную полипептидную молекулу (синтезируемый эпителиальными клетками секреторный компонент). Эта молекула присоединяется к мономерам IgA в ходе их транспорта через эпителиальные клетки на поверхность слизистых оболочек. Секреторный компонент участвует не только в связывании молекул IgA, но обеспечивает их внутриклеточный транспорт и выделение на поверхность слизистых, а также защищает IgA от переваривания протеолитическими ферментами. Молекулы IgA участвуют в реакциях нейтрализации и агглютинации возбудителей. Кроме того, после образования комплекса Аг-АТ они участвуют в активации комплемента по альтернативному пути.Иммуноглобулин Е (IgE) специфически взаимодействуют с тучными клетками и базофильными лейкоцитами, содержащими многочисленные гранулы с БАВ. Их выделение из клетки (дегрануляция) вызывает резкое расширение просвета венул и увеличение проницаемости их стенки. Подобную картину можно наблюдать при аллергических реакциях (например, бронхиальной астме, аллергическом рините, крапивнице).

    3.Возбудитель клещевого энцефалита. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилактика . Семейство Flaviviridae. Вирусы, относящиеся к этому семейству имеют средний размер 45 нм, форму икосаэдра, однонитчатую РНК, плюс нитевую, нет транскриптазы. Семейство включает в себя более 70 групп. Переносчиками являются клещи рода иксодовых, которые трансовариально,трансфазно могут передавать этот вирус. Для этого заболевания характерен и молочный путь передачи, известна молочная вспышка в Приозерском районе. Вирус культивируют на курином эмбрионе и на культуре тканей. Клинические особенности : инкубационный период 10-12 дней, далее возникает головная боль, тошнота, рвота, часто развиваются паралич, парезы. Неврологическая симптоматика отчасти обусловлена заражением и гибелью нейронов, отчасти - отеком, воспалением и другими патологическими процессами.У переболевшего остается стойкий иммунитет. Лабораторная диагностика : выделение вируса - исследуют кровь, спинномозговую жидкость, серологические реакции. Используют реакцию связывания комплемента, иммуноферментный анализ, как экпресс-методы в стадии лихорадки, используют кожно-аллергическую пробу. Внутрикожно вводят 0,1 мл аллергена из очищенного инактивированного ультразвуком штамма вируса клещевого энцефалита, выращенного на культуре ткани. Профилактика - неспецифическая - борьба с клещами, и грызунами, специфическая профилактика - вакцина, представляющая собой взвесь вирусов, адсорбированных на гидроокиси алюминия. Разработан противоэнцефалитический лошадиный гамма- глобулин.

    1. Типы взаимодействия вируса с клеткой. Стадии репродукции вирусов. Формы взаимодействия:-продуктивная; -интегративная(вирогения); -абортивная; Продуктивный тип - завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитоли-тическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).Абортивный тип - не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

    Интегративный тип, или вирогения - характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация). Продуктивная форма взаимодействия:Стадии репродукции вирусов. 1 - адсорбция вириона на клетке; 2 - проникновение вириона в клетку путем виропексиса;3 - вирус внутри вакуоли клетки; 4 - `раздевание вириона вируса; 5 - репликация вирусной нуклеиновой кислоты; 6 - синтез вирусных белков на рибосомах клетки; 7 - формирование вириона; 8 - выход вириона из клетки путем почкования.Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбирует­ся на определенных участках клеточной мембраны - так назы­ваемых рецепторах. Клеточные рецепторы могут иметь разную хи­мическую природу, представляя собой белки, углеводные ком­поненты белков и липидов, липиды. Число специфических ре­цепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.Проникновение в клетку. Существует два способа проникнове­ния вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорб­ции вирусов происходят инвагинация (впячивание) участка кле­точной мембраны и образование внутриклеточной вакуоли, ко­торая содержит вирусную частицу. Вакуоль с вирусом может транс­портироваться в любом направлении в разные участки цитоплаз­мы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего ком­понента вируса, способного вызвать инфекционный процесс. «Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов. В случае проникновения вируса путем слияния вирусной оболочки с кле­точной мембраной процесс проникновения вируса в клетку со­четается с первым этапом его «раздевания». Конечными продук­тами «раздевания» являются сердцевина, нуклеокапсид или нук­леиновая кислота вируса. Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирус­ные белки и нуклеиновые кислоты, идущие на построение ви­русного потомства.Реализация генетической информации вируса осуществляет­ся в соответствии с процес­сами транскрипции, трансляции и репликации. Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфи­чески «узнавать» друг друга и при достаточной их концентра­ции самопроизвольно соединяются в результате гидрофобных, со­левых и водородных связей. Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

    1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

    2. Сборка просто устроенных вирусов заключается во взаимодей­ствии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми­руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).Выход вирусов из клетки. Различают два основных типа выхо­да вирусного потомства из клетки. Первый тип - взрывной - характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает. Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип - почкование. Он присущ вирусам, имеющим суперкапсидную оболочку. На заключительном этапе сборки нук­леокапсиды сложно устроенных вирусов фиксируются на клеточ­ной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячива­ния образуется «почка», содержащая нуклеокапсид. Затем «поч­ка» отделяется от клетки. Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При та­ком механизме клетка может продолжительное время продуци­ровать вирус, сохраняя в той или иной мере свои основные функции.Время, необходимое для осуществления полного цикла реп­родукции вирусов, варьирует от 5-6 ч (вирусы гриппа, нату­ральной оспы и др.) до нескольких суток (вирусы кори, адено­вирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репро­дукции.

    2.Понятие об иммунитете. Виды иммунитета ммунитет - представляет собой целостную систему биологических механизмов самозащиты организма, с помощью которых он распознаёт и уничтожает всё чужеродное (т.е. генетически отличающееся от него), если оно проникает в организм или возникает в нём. Различают два основных вида иммунитета :Наследственный (врожденный, видовой) иммунитет присущ определенному виду животных или человеку и передается из поколения в поколение, как и другие генетические признаки. Наследственный иммунитет генетически детерминирован как невосприимчивость к определенному виду микроба . Например, крысы и мыши устойчивы к дифтерийному токсину, люди невосприимчивы к возбудителям чумы рогатого скота и собак, но только люди болеют гонореей, сифилисом, брюшным тифом и другими инфекциями, к возбудителям которых устойчивы все виды животных. Приобретенный иммунитет развивается вследствие перенесенной инфекции (естественно приобретенный иммунитет ) или в результате иммунизации (искусственно приобретенный иммунитет ). Приобретенный иммунитет в отличие от видового строго специфичен и не передается по наследству. Существует активно и пассивно приобретенный иммунитет.Активно приобретенный иммунитет возникает вследствие перенесенного заболевания (естественно) или в результате вакцинации (искусственно) и сохраняется относительно долго. После некоторых перенесенных заболеваний (например, после кори, коклюша, оспы) остается пожизненный иммунитет, но после гриппа иммунитет сохраняется только 1-2 года.Пассивно приобретенный иммунитет может возникать естественно, когда антитела от матери передаются через плаценту, и новорожденный в течение 6- 7 мес невосприимчив к некоторым инфекционным заболеваниям, например, к кори. Искусственный пассивно приобретенный иммунитет создается при введении иммунной сыворотки или иммуноглобулина и сохраняется непродолжительно (3-4 нед).Различают антибактериальный, антитоксический, противовирусный и трансплантационный иммунитет . При антибактериальном иммунитете защитные силы организма направлены против бактерий, на подавление их размножения. Антитоксический иммунитет характеризуется нейтрализацией антителами-антитоксинами микробных экзотоксинов, противовирусный-обусловлен нейтрализующим действием противовирусных антител на вирионы. Иммунная защита организма - основная причина несовместимости тканей при трансплантации (пересадка органов и тканей), что обусловило развитие нового направления в иммунологии - проблемы трансплантационного иммунитета.Приобретенный иммунитет может быть стерильным и нестерильным . Стерильный иммунитет характеризуется полным освобождением организма от возбудителя заболевания. Нестерильный, или инфекционный, иммунитет обусловлен наличием в организме микроба возбудителя.е. Продолжительность инфекционного иммунитета зависит от того, сколько времени в организме будет находиться инфекционный агент. Например, наличие в организме человека туберкулезного очага обусловливает невосприимчивость к новому заражению микобактериями туберкулеза.Учение о местном иммунитете связано с именем русского ученого А. М. Безредки, который еще в 1919 г. высказал свое мнение о значении местных специфических и неспецифических факторов в возникновении и развитии инфекции. рвым защитным барьером на пути проникновения микробов через поверхности слизистых оболочек, способствовало развитию учения о местном иммунитете.

    Лечение Лечение больных чумой в настоящее время сводится к применению антибиотиков, сульфаниламидов и лечебной противочумной сыворотки. Профилактика чумы. Противоэпидемические мероприятия при чуме.

    В соответствии с реальными угрозами появления больных чумой предусмотрены мероприятия в двух направлениях:предотвращение заноса инфекции извне, профилактические и противоэпидемические мероприятия в природных очагах. Профилактические и противоэпидемические мероприятия в природных очагах чумы, которые осуществляются на основе данных слежения, предусматривают при активизации очага вакцинацию лиц, постоянн о находящихся в зоне очага или следующих в него, с помощью живой вакцины из штамма EV. Препарат обеспечивает удовлетворительную защиту, однако возможны заболевания среди привитых, поэтому надо иметь в виду проведение изоляционных, карантинных (включая дезинфекцию) мероприятий. Широкие полевые дератизационные и дезинсекционные мероприятия могут быть предусмотрены только при чрезвычайной ситуации (мощная эпизоотия и реальная угроза развития эпидемического процесса).


    29. Основные принципы культивирования бактерий. Факторы, влияющие на рост и размножение бактерий. Культуральные свойства бактерий.

    Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу , а для посевов на чашках Петри - металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

    При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами над г писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

    Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

    Для того чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез какого-либо вещества, необходимы благоприятные условия окружающей среды. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель.

    Физические – температура, влажность среды, концентрация питательных веществ.

    К химическим факторам , которые влияют на жизнедеятельность микроорганизмов, относятся: рН среды, окислительно-восстановительный потенциал (гН2) и присутствие в среде токсичных веществ.

    Биологические факторы – сводятся к взаимоотношению между микроорганизмами, соприкасающимися в процессе своей жизнедеятельности.

    Культуральные свойства бактерий – питательные потребности, условия роста и характер роста бактерий на бактериол. средах. В питательные , азота и ростовых факторов, способность бактерий расти на определенных питательных средах, в условия роста - рН, Eh, концентрацию О2 плотность, осмотическое давление среды, температуру роста; в характер роста - скорость роста (быстрый, медленный), внешний вид к-ры на жидких, плотных и полужидких средах, изменения, к-рые наступают в среде или отдельных ее компонентах в процессе роста микробов. Сведения о К.с. используют при выборе способов культивирования и при идентификации выделенной к-ры

    30. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий.

    Чистой культурой называется популяция бактерий одного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты -биовары (син: биотипы). Биовары, различающиеся по биохимическим свойствам, называют хемоварами, по антигенным свойствам - сероварами, по чувствительности к фагу-фаговарами. Культуры микробов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо символами. Чистые культуры бактерий в диагностических бактериологических лабораториях получают из изолированных колоний, пересевая их петлей в пробирку с твердой или, реже, жидкой питательной средой.

    Колония представляет собой изолированное скопление бактерий одного вида, или биовара, выросших на плотной питательной среде в результате размножения одной или нескольких бактериальных клеток. Колонии бактерий разных видов отличаются друг от друга по своей морфологии, цвету и другим признакам.

    Чистую культуру -бактерий получают для проведения диагностических исследований , которые заключаются в идентификации, т. е. определении родовой и видовой принадлежности выделенных бактерий. Это достигается путем изучения их морфологических, культуральных, биохимических и других признаков (см. схему 1).

    Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

    Культуральные свойства характеризуют питательные потребности, условия и тип роста бактерий на плотных и жидких питательных средах. Эти свойства устанавливаются по морфологии колоний и особенностям роста культуры.

    Биохимические признаки бактерий определяются набором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической практике таксономическое значение имеют чаще всего сахаролитические и протеолитические признаки бактерий, которые определяют на дифференциально-диагностических средах.

    Для идентификации бактерий до рода и вида имеют значение пигменты, окрашивающие колонии и культуры в разнообразные цвета. Например, красный пигмент образуют Serratia marcescens (палочка чудесной крови), золотистый пигмент-Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент-Pseudomonas aeruginosa (палочка синезе-леного гноя).

    Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выполнению соответствующего маркера - определению фермента, антигена, чувствительности к фагам.

    31. Микрофлора почвы, воды, воздуха. Патогенные виды, сохраняющиеся во внешней среде и передающиеся через почву, воду, пищевые продукты, воздух.

    Почва. В зависимости от глубины залегания слоя почвы меняется и состав ее микрофлоры. В верхних слоях, богатых растительными и животными остатками, а также хорошо снабженных воздухом, преобладают аэробные микроорганизмы, способные разлагать сложные органические соединения. В более глубоких почвенных слоях содержится меньше органических соединений и воздуха, вследствие чего там преобладают анаэробные бактерии.

    Почва служит местом обитания спорообразующих палочек родов Bacillus и Clostridium. Непатогенные бациллы (Вас. megatherium, Вас. subtilis и др.) наряду с псевдомонадами , протеем и некоторыми другими бактериями являются аммонифицирующими, составляя группу гнилостных бактерий, осуществляющих минерализацию белков. Патогенные палочки (возбудитель сибирской язвы, ботулизма, столбняка, газовой гангрены) способны длительно сохраняться в почве.

    В почве находятся также многочисленные представители грибов. Грибы участвуют в почвообразовательных процессах, превращениях соединений азота, выделяют биологически активные вещества, в том числе антибиотики и токсины. Токсинообразующие грибы, попадая в продукты питания человека, вызывают интоксикации - микотоксикозы и афлатоксикозы.

    Микрофлора воды отражает микробный состав почвы, так как микроорганизмы, в основном, попадают в воду с ее частичками. В воде формируются определенные биоценозы с преобладанием микроорганизмов, адаптировавшихся к условиям местонахождения, освещенности, степени растворимости кислорода и диоксида углерода, содержания органических и минеральных веществ.

    В водах пресных водоемов обнаруживаются различные бактерии: палочковидные (псевдомонады, аэромонады), кокковидные (микрококки) и извитые. Загрязнение воды органическими веществами сопровождается увеличением анаэробных и аэробных бактерий, а также грибов. Микрофлора воды выполняет роль активного фактора в процессе самоочищения ее от органических отходов, которые утилизируются микроорганизмами. Вместе с сточными водами попадают представители нормальной микрофлоры человека и животных (кишечная палочка, цитробактер, энтеробактер, энтерококки, клостридии) и возбудители кишечных инфекций (брюшного тифа, паратифов, дизентерии, холеры, лептоспироза, энтеровирусных инфекций). Таким образом, вода является фактором передачи возбудителей многих инфекционных заболеваний. Некоторые возбудители могут даже размножаться в воде (холерный вибрион, легионеллы).

    Микрофлора воздуха взаимосвязана с микрофлорой почвы и воды. В воздух также попадают микроорганизмы из дыхательных путей и с каплями слюны человека и животных. Солнечные лучи и другие факторы способствуют гибели микрофлоры воздуха. В воздухе обнаруживаются кокковидные и палочковидные бактерий, бациллы и клостридии, актиномицеты, грибы и вирусы. Много микроорганизмов содержится в воздухе закрытых помещений , микробная обсемененность которых зависит от степени уборки помещения, уровня освещенности, количества людей в помещении, частоты проветривания и др. Количество микроорганизмов в 1 м3 воздуха (так называемое микробное число, или обсемененность воздуха) отражает санитарно-гигиеническое состояние воздуха, особенно в больничных и детских учреждениях. Косвенно о выделении патогенных микроорганизмов (возбудителей туберкулеза, дифтерии, коклюша, скарлатины, кори, гриппа и др.) при разговоре, кашле, чиханье больных и носителей можно судить по наличию санитарно-показательных бактерий (золотистого стафилококка и стрептококков), так как последние являются представителями микрофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроорганизмами, передающимися воздушно-капельным путем.

    32. Санитарно – показательные микроорганизмы. Коли – титр, коли – индекс, методы определения.

    Санитарно-показательными называют микроорганизмы, по которым можно косвенно и с еще большей степенью вероятности судить о возможном присутствии патогенов во внешней среде.

    Их наличие свидетельствует о загрязнении объекта выделениями человека и животных, так как они постоянно обитают в тех же органах, что и возбудители заболеваний, и имеют общий путь выделения в окружающую среду. Например, возбудители кишечных инфекций имеют общий путь выделения (с фекалиями) с такими санитарно-показательными бактериями, как бактерии группы кишечной палочки -(в группу входят сходные по свойствам бактерии родов Citrobacter, Enterobacter, Klebsiella), энтерококки, клостридии перфрингенс. Возбудители воздушно-капельных инфекций имеют общий путь выделения с бактериями (кокками), постоянно обитающими на слизистой оболочке верхних дыхательных путей, выделяющимися в окружающую среду (при кашле, чиханье, разговоре), поэтому в качестве санитарно-показательных бактерий для воздуха закрытых помещений предложены гемолитические стрептококки и золотистые стафилококки. Санитарно-показательные микроорганизмы должны отвечать следующим основным требованиям:

    1. должны обитать только в организме людей или животных и постоянно обнаруживаться в их выделениях;

    2. не должны размножаться или обитать в почве и воде;

    3. сроки их выживания и устойчивость к различным факторам после выделения из организма в окружающую среду должны быть равными или превышать таковые у патогенных микробов;

    5. методы их обнаружения и идентификации должны быть простыми, методически и экономически доступными;

    6. должны встречаться в окружающей среде в значительно больших количествах, чем патогенные микроорганизмы;

    7. в окружающей среде не должно быть близко сходных обитателей - микроорганизмов.

    Коли-индекс - количество особей кишечной палочки, обнаруживаемое в 1 л (для твердых тел в 1 кг) исследуемого объекта; определяется путем подсчета колоний кишечной палочки, выросших на плотной питательной среде при посеве определенного количества исследуемого материала, с последующим пересчетом на 1 л (кг). Коли-индекс - величина, пропорциональная фактическому содержанию кишечной палочки в исследуемом субстрате.

    Коли-титр - это наименьшее количество исследуемого материала в миллилитрах (для твердых тел - в граммах), в котором обнаружена одна кишечная палочка. Для определения коли-титра раздельно засевают на жидкие среды десятикратно уменьшающиеся объемы исследуемого материала (например, 100; 10; 1; 0,1; 0,01; 0,001 мл).

    Для перевода коли-титра в коли-индекс следует 1000 разделить на число, выражающее коли-титр; для перевода коли-индекса в коли-титр 1000 разделить на число, выражающее коли-индекс.

    33. Микрофлора тела человека в различные возрастные периоды. Роль микробов – постоянных обитателей тела человека в физиологических процессах. Понятие о дисбактериозе, его классификация, проявления и методы лечения.

    Микрофлора располагается только на коже и на слизистых оболочках полостей, сообщающихся с внешней средой (кроме матки и мочевого пузыря). Все ткани организма в норме совершенно свободны от микробов.

    Естественная аутомикрофлора тела- единый природный комплекс, состоящий из совокупности гетерогенных микробоценозов в различных участках человеческого организма.

    До рождения организм человека стерилен,- в утробе матери эмбрион защищен от вторжения микробов плацентарным и другими барьерами.

    Микрофлора пищеварительного тракта - самая многочисленная и самая значимая для поддержания здоровья человека. Особенно велика ее роль в развивающемся детском организме.

    Существует два критических момента в процессе формирования кишечного микробиоценоза. Первый - при рождении ребенка, когда в течение первых суток начинается колонизация стерильного кишечника, второй - когда ребенка отлучают от грудного вскармливания.

    В ходе родов кожа и слизистые ребенка впервые соприкасаются с микрофлорой родовых путей матери, воздуха, рук медицинского персонала. Вследствие этого кишечная микрофлора первых дней жизни ребенка представлена ассоциацией аэробов (в основном факультативными анаэробами) - микрококками, энтерококками, клостридиями, стафилококками. К 4-5-му дню жизни видовой состав фекальной микрофлоры становится более разнообразным , появляются ассоциации неспорообразующих анаэробов (бифидобактерии, пропионибактерии, пептококки, пептострептококки, бактероиды и фузобактерии). Однако пока еще доминируют аэробные бактерии - лактобациллы, кокки, дрожжевые грибки.

    Дальнейшее формирование аутомикрофлоры желудочно-кишечного тракта в основном зависит от типа вскармливания. При грудном вскармливанииу здоровых доношенных детей уже в конце первой - начале второй недели жизни в микробоценозе толстого кишечника за счет опережающих темпов роста отчетливо преобладает анаэробная составляющая (более 95%). Оставшаяся часть (около 4-5%) представлена разнообразными факультативными аэробами: лактобациллами, эшерихиями, энтерококками, эпидермальным стафилококком, дрожжевыми грибками.

    Роль микробов – постоянных обитателей тела человека в физиологических процессах

    Микробные биоценозы поддерживают нормальные физиологические функции и играют определённую роль в иммунитете. Нарушения в микробных биоценозах во многих случаях могут привести к возникновению патологических процессов в соответствующих органах.

    Важную роль играет микрофлора толстой кишки. Она обладает выраженными антагонистическими свойствами (особенно анаэробные микробы) и препятствует развитию патогенных бактерий, которые могут попасть с пищей и водой в кишечник, а также гнилостных бактерий. Микробы – постоянные обитатели кишечника образуют бактериоцины, антибиотики, молочную кислоту, спирты, перекись водорода, жирные кислоты, которые подавляют размножение патогенных видов. Таким образом, анаэробы кишечника участвуют в обеспечении колонизационной резистентности, так как предотвращают колонизацию (заселение) слизистых оболочек посторонними микроорганизмами.

    Микробы кишечника также участвуют в процессах пищеварения, водно-солевом, белковом, углеводном, липидном обменах, образуют на слизистой оболочке кишечника защитную плёнку, способствуют формированию и развитию иммунной системы, участвуют в обезвреживании токсических соединений, синтезируют биологически активные вещества (витамины, антибиотики, бактериоцины).

    Большое значение имеет E. сoli, которая обладает высокой ферментативной активностью, синтезирует витамины B1, B2, B12, B5, K, обладает антагонистическими свойствами против патогенных представителей семейства Enterobacteriaceae, против стафилококков и грибов p. Candida.

    Понятие о дисбактериозе, его классификация, проявления и методы лечения.

    Дисбактериоз (дисбиоз) – это состояние, развивающееся в результате утраты нормальных функций микрофлоры. При этом происходит нарушение сложившегося равновесия между видами микробов, а также между ними и организмом человека, т.е. нарушается состояние эубиоза. При дисбактериозе происходят качественные и количественные изменения бактериальной микрофлоры. При дисбиозе – изменения и среди других микроорганизмов (вирусов, грибов). Дисбактериозы вызывают различные эндогенные (внутренние) и экзогенные (внешние) факторы. Чаще всего развиваются дисбактериозы кишечника.

    Вид дисбактериоза по возбудителю:


    • стафилококковый

    • протейный

    • дрожжевой

    • ассоциированный (стафилококковый, протейный, дрожжевой)
    По степени компенсации:

    • компенсированная - клинических проявлений может не быть;

    • субкомпенсированная - проявления дисбактериоза иногда возникают при диетических нарушениях, например;

    • декомпенсированная - приспособительные механизмы истощены, вылечить дисбактериоз трудно.
    Лечение заключается в восстановлении нормальной микрофлоры. Для восстановления нормальной микрофлоры применяются пробиотики.

    Микроорганизмы используют питательные вещества для построение компонентов бактериальной стенки и для получения энергии. По характеру захвата пищи бактерии относятся к ОСМОФИЛАМ , т.е. питаются веществами, растворёнными в воде. Как и др мк они нуждаются в большом кол-ве минеральных в-в (С, О, N, S, Р, Са, Fe и др).

    Основным источником углерода для б! могут служить неорг соед-я (чаще СО2), из которых мк синтезирует орг в-ва – это АУТО- или ФОТОТРОФЫ (синегнойная палочка). Если же мк нуждаются в орг соед-ях, к/е служат им источником углерода и азота, то их наз. ХЕМО- или ГЕТЕРОТРОФАМИ . В результате ассимиляции и окисления орг в-в (из прир соед-й чаще всего исп-ся полисахариды – крахмал, целлюлоза), выделяется азот.

    Помимо этих в-в, мк необходимы доп в-ва – факторы роста, к ним относится большое кол-во АК, пуриновые и пиримидиновые основания, витамины. Они входят в состав микробной , но синтезировать их самостоятельно они не могут, поэтому факторы роста обязательно должны присутствовать в пит среде у некоторых б!!. Если мк нуждаются в факторах роста – АУКСОТРОФЫ , если нет – ПРОТОТРОФЫ .

    Основные принципы культивирования бактерий:

    Универсальным инструментом для производства посевов является бактериальная петля. Кроме нее для посевов на чашках Петри - металлические или стеклянные шпатели. При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая другими пальцами той же руки петлю, набирают ею посевной материал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней части среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного материала (номер исследования или название культуры). Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, петлей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горелки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

    Питательной средой в микробиологии называют среды, содержащие различные соединения сложного или простого состава, которые применяются для размножения бактерий или других микроорганизмов в лабораторных или промышленных условиях. Большое значение имеет наличие в питательной среде ростовых факторов, которые катализируют метаболические процессы микробной клетки (витамины группы В, никотиновая кислота и др.). Искусственные среды готовят по определенным рецептам из различных настоев или отваров животного или растительного происхождения с добавлением неорганических солей, углеводов и азотистых веществ. В бактериологической практике чаще всего используют сухие питательные среды, которые получают на основе достижений современной биотехнологии. Для их приготовления используют экономически рентабельное непищевое сырье: утратившие срок годности кровезаменители (гидролизин-кислотный гидролизат крови животных, аминопептид - ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды могут храниться в течение длительного времени, удобны при транспортировке и имеют относительно стандартный состав. По консистенции питательные среды могут быть жидкими, полужидкими, плотными. Плотные среды готовят путем до-бавления к жидкой среде 1,5-2% агара, полужидкие - 0,3- 0,7 % агара. Агар представляет собой продукт переработки осо-бого вида морских водорослей, он плавится при температуре 80-86 °С, затвердевает при температуре около 40 °С и в застыв-шем состоянии придает среде плотность. В некоторых случаях для получения плотных питательных сред используют желатин (10-15%). Ряд естественных питательных сред (свернутая сыворотка крови, свернутый яичный белок) сами по себе являются плотными. По целевому назначению среды подразделяют на основные, элективные и дифференциально-диагностические.

    К основным относятся среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду - питательный бульон и плотную - питательный агар. Такие среды служат основой для приготовления сложных питательных сред - сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бактерий. Элективные питательные среды предназначены для избирательного выделения и накопления микроорганизмов определенного вида (или определенной группы) из материалов, содержащих разнообразную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особенностей, которые отличают данные микроорганизмы от большинства других. Например, избирательный рост стафилококков наблюдается при повышенной концентрации хлорида натрия, холерного вибриона - в щелочной среде и т. д. Дифференциально-диагностическиепитательные среды применяются для разграничения отдельных видов (или групп) мик-роорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий различаются между собой по биохи-мической активности вследствие неодинакового набора ферментов. Особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. Особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды чаще всего применяют в научно-исследовательской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов. В последние годы в целях экономии питательных сред и ускоренной идентификации некоторых микроорганизмов (энтеробактерии, стафилококки, стрептококки и др.) применяются так называемые микротест-системы(МТС). Они представляют собой полистироловые пластины с лунками, в которых содержатся стерильные дифференциально-диагностические среды. Стерилизацию МТС проводят УФ-облучением. Микротест-системы особенно удобны при массовых бактериологических исследованиях в практических лабораториях. Требования, предъявляемые к питательным средам . Любая питательная среда должна отвечать следующим требованиям: содержать все необходимые для размножения микроорганизмов вещества в легкоусвояемой форме; иметь оптимальные влажность, вязкость, рН, быть изотоничной и по возможности прозрачной. Каждую питательную среду стерилизуют определенным способом в зависимости от ее состава.

    Микроорганизмы в окружающей нас природе находятся повсеместно: в почвах, водоемах, на поверхностях всевозможных предметов, ими населены люди и животные. Все это может служить источниками загрязнения микробами продуктов питания, лекарств, производственных линий. Культивирование бактерий необходимо для изучения их свойств, потребностей, особенностей. Это в свою очередь является важным этапом в разработке различных лекарственных препаратов, лабораторной диагностике заболеваний, расчете производственных реакторов и многого другого.

    Общие понятия

    Под культивированием бактерий в микробиологии понимают выращивание микроорганизмов, осуществляемое в лабораторных условиях. В свою очередь микробы, которые выросли на подобранной питательной среде, называют культурой. Культуры могут быть смешанными, если они образованы разными видами микроорганизмов, и чистыми, если представлены только одним видом бактерий.

    Если в помещают только одну клетку, а получают в результате ее размножения группу особей, то эту совокупность микроорганизмов называют клоном. Когда клон развивается до такого уровня, что становится виден невооруженным глазом, такое скопление бактерий называют колонией.

    Обычно культивирование бактерий, выделенных из различных источников, производят отдельно друг от друга. Каждую такую отдельно выращенную группу микробов называют штаммом. Так, если один вид стафиллококка выделен из трех источников (или разных порций одного и того же продукта, разных человек), говорят о трех штаммах этого вида стафилококка.

    Факторы роста бактерий

    К ним относят различные аминокислоты, липиды, пуриновые основания и другие соединения, необходимые для развития микроорганизмов. Некоторые микробы могут самостоятельно вырабатывать необходимые им вещества, а другим необходимо получать их в готовом виде. По потребности микроорганизмов в тех или иных ростовых факторах проводят идентификацию и дифференциацию бактерий. Также этот параметр важен для правильного изготовления питательной среды в целях проведения лабораторных и биотехнологических работ:

    • Аминокислоты. Бактерии могут нуждаться в одной конкретной аминокислоте или какой-либо группе кислот. Так, клостридиям необходим лейцин и тирозин, стрептококкам - лейцин и аргинин. Микроорганизмы, которым для роста необходимо получение аминокислот извне, называют ауксотрофными.
    • Пуриновые и пиримидиновые основания, а также их производные (аденин, гуанин и другие). Они являются важным фактором роста многих видов стрептококков.
    • Витамины. Они входят в состав коферментов, требуемых бактериям. Так, никотиновая кислота, а также ее амид, входящие в состав НАД и НАДФ, нужна шигеллы. Тиамин, как составная часть пирофосфата, требуется золотистому стафилококку, пневмококку, бруцеллам. Пантотеновая кислота, входящая в кофермент КоА, требуется бациллам столбняка и отдельным видам стрептококка. Цитохромы, а значит, образующие их фолиевая кислота, гемы и биотин, необходимы микобактериям туберкулеза и гемофильным бактериям.

    Требования к средам

    Условия, предъявляемые к питательным средам для культивирования бактерий:

    1. Питательность. Они должны содержать вещества, причем находящиеся в легко усвояемом виде, необходимые микроорганизмам для питания и пополнения энергии. К ним относят органогены и минеральные вещества. Для некоторых микроорганизмов дополнительно необходимы витамины и аминокислоты, которые они не могут синтезировать.
    2. Оптимальный уровень рН. Он влияет на проницаемость клеточной оболочки и, соответственно, на возможность усвоения питательных веществ бактерией. Чаще всего значение водородного показателя должно быть на уровне 7,2-7,4. Многие микроорганизмы в ходе своей жизнедеятельности вырабатывают продукты с кислой или щелочной реакций, и для того, чтобы рН питательной среды не изменялся, она должна обладать буферностью.
    3. Изотоничность. Осмотическое давление в питательной среде для культивирования бактерий должно иметь те же значения, что и внутри микробных клеток. Обычно оно соответствует 0,5 % раствору NaCl.
    4. Стерильность. Связано это с тем, что появление посторонних бактерий исказит результаты изучения анализируемого штамма.
    5. Уровень влажности. Этот показатель наряду с консистенцией среды должен иметь оптимальные характеристики для конкретного вида бактерий.
    6. Окислительно-восстановительный потенциал (RH2). Он показывает соотношение веществ, которые отдают и которые принимают электроны, а также уровень насыщения кислородом питательной среды. Для аэробов и анаэробов условия культивирования бактерий несколько разнятся по данному показателю. Анаэробные микроорганизмы лучше всего размножаются при значениях RH2, не превышающих 5, а аэробные - не менее 10.
    7. Унифицированность. Важно, чтобы питательная среда содержала неизменные количества отдельных ее ингредиентов. Кроме того, предпочтительны прозрачные растворы, на которых легче отслеживать рост культуры или заметить ее загрязнение.

    Виды питательных сред

    На выбор той или иной среды для выращивания микроорганизмов влияет множество факторов, среди которых - особенности их питания и цели исследования. Основными признаками, положенными в основу классификации питательных сред, являются:

    1. Компоненты. По исходным веществам, используемым для создания субстрата, различают:

    • натуральные, которые готовятся из продуктов животного или растительного происхождения (например, мяса, молока, фруктов) и удобны для выращивания смешанных культур;
    • полусинтетические, в которых дорогостоящие натуральные пищевые продукты заменены на непищевые (например, костную муку, сгустки крови), и которые оптимальны для культивирования бактерий отдельных видов или выделения из среды продуктов их жизнедеятельности;
    • синтетические, которые готовятся из точных количеств химических соединений, имеют известный постоянный состав и легко воспроизводятся.

    2. Консистенция (плотность). Различают среды:

    • жидкие;
    • плотные;
    • полужидкие.

    Последние две готовят из специальных растворов или жидких веществ с добавлением агар-агара или желатина для создания необходимой плотности. Кроме того, плотной средой для роста бактерий является свернутая сыворотка крови, картофель, среды с силикагелем, каррагинан.

    3. Состав. По данному признаку среды бывают:

    • простые, список которых короток - это мясопептонный бульон (МПБ), бульон и агар Хоттин-гера, мясопептонный агар (МПА), питательный желатин и пептонная вода.
    • сложные, приготовляемые из простых с добавлением крови, сыворотки, углеводов и другие веществ.

    4. Назначение. Выделяют следующие питательные среды:

    • основные служат для выращивания многих патогенных микробов (обычно простого состава);
    • специальные применяют для выделения и культивирования бактерий, которые не растут на простых субстратах;
    • элективные (они же избирательные) подходят для выделения конкретного вида бактерий и подавляют рост сопутствующих микробов (селективность создается путем прибавки к средам некоторых веществ, например антибиотиков или солей, или коррекцией рН);
    • дифференциально-диагностические дают возможность отличить один вид бактерий от другого путем оценки ферментативной активности, например, среды;
    • консервирующие нужны для первичного посева с последующей транспортировкой образцов, поскольку предотвращают отмирание микроорганизмов, а также подавляют рост других бактерий.

    Приготовление питательных сред

    Важнейшим этапом культивирования анаэробных бактерий является приготовление подходящей питательной среды. После того, как выбраны оптимальные параметры, переходят к следующим стадиям:

    • взвешивание, путем отбора навески компонентов на аналитических весах;
    • растворение, проводимое в подогретой до 70 °С дистиллированной воде, причем отдельно растворяют фосфаты, микро- и макросоли;
    • кипячение, осуществляемое на водяной бане на протяжении двух минут;
    • определение pH, выполняемое индикаторной бумагой или потенциометром;
    • фильтрация, производимая через смоченный матерчатый или бумажный фильтры для жидких, а также расплавленных плотных сред, и через ватно-марлевый фильтр для агаровых;
    • розлив, выполняемый на 3/4 емкости;
    • стерилизация, зависящая от состава среды;
    • контроль на стерильность осуществляется путем отстаивания в течение двух суток в термостате с последующим просмотром;
    • химический контроль для установления рН и содержания необходимых элементов;
    • биологический контроль путем пробного засева.

    Стерилизация посуды и сред

    Одним из основных принципов культивирования бактерий является стерильность. Рост и развитие посторонних микроорганизмов может повлиять на характеристики питательной среды путем изменения ее химического состава и рН. Стерилизация является главным условием выращивания чистых культур. На практике под этим термином подразумевают методы уничтожения абсолютно всех жизненных форм на поверхности и в объеме стерилизуемых объектов. Стерилизации подвергается посуда, применяемые инструменты, среды, а также другие предметы, используемые в ходе исследования.

    Некоторые виды стерилизации:

    • Прокаливание. Стерилизацию петель и игл для посева, предметных стекол, некоторого инструмента можно выполнять с помощью горелки или спиртовки.
    • Кипячение. Годится для обработки шприцов, игл, пищевых продуктов, но не убивает споры бактерий.
    • Сухожаровая стерилизация. Проводится в особом сушильном шкафу и подходит для обработки колб, пробирок и прочей лабораторной посуды.
    • Стерилизация паром. Проводимый в автоклаве этот метод является высокоэффективным. Но он не годится для питательных сред, в состав которых входят белки или какие-либо другие соединения, разрушающиеся при высоких температурах. Более щадящей можно назвать тиндализацию. Она проводится в кипятильнике Коха и сочетает проращивание спор с их уничтожением.
    • Пастеризация. Применяется для сред, меняющих свои свойства при кипячении (например, молоко, вино, пиво), способна избавить их от неспороносных микроорганизмов. Температура обработки составляет всего 50-60 °С на протяжении пятнадцати-тридцати минут. В некоторых случаях применяют холодную стерилизацию, осуществляемую с помощью фильтров или УФ-лучей.

    Условия культивирования бактерий

    Рост и развитие бактерий возможны лишь при определенных факторах и значениях каждого из них:

    1. Температура. Различают три группы бактерий, отличающихся температурными предпочтениями:

    • термофилы, или теплолюбивые микробы, растут при 45-90°С, а значит, не размножаются в организмах человека и животного;
    • психрофилы, или холодолюбивые микроорганизмы, предпочитают температуру в интервале 5-15 °С и выращиваются в холодильных камерах;
    • мезофилы, развиваются при температуре 25-37 °С, к ним относится основная масса бактерий.

    2. Свет. Является особенностью культивирования бактерий-фототрофов, поскольку они осуществляют фотосинтетический процесс. Но для большинства микробов освещение не является обязательным условием. И даже наоборот, солнечный ультрафиолет может подавлять их развитие.

    3. Вода. Всем микроорганизмам необходима вода в доступной (жидкой) форме. Вот почему в замороженных продуктах бактерии практически не развиваются.

    4. Этот принцип культивирования бактерий уже был подробно разобран выше.

    5. Аэрация. Кислород, как химический элемент, является составной частью воды и немалого количества соединений, применяемых для выращивания микроорганизмов. Газообразный кислород также может содержаться в воде и прочих жидкостях в растворенном виде. Существенная часть бактерий нуждается в постоянном поступлении молекул кислорода. Но ряду микроорганизмов он без надобности, или, хуже того, газообразный кислород токсичен для них, поскольку они не имеют каталазы и пероксидазы, разрушающих токсичные продуты дыхания. Поэтому важнейшим этапом культивирования анаэробных бактерий является удаление молекул О 2 из питательной среды.

    6. Культивирование микроорганизмов. Выращивание аэробных и анаэробных бактерий проводится в различных слоях среды и в разных режимах.

    Выращивание аэробных микроорганизмов

    Для культивирования аэробных бактерий требуется молекулярный кислород. Для получения чистых культур аэробов, которые можно успешно применять в медицине и пищевой промышленности, используются следующие методы:

    • поверхностное выращивание на плотных средах или в жидких средах (их тонком слое), когда кислород поступает прямо из воздуха;
    • глубинное культивирование в жидких средах, когда повышения количества растворенного в них кислорода добиваются путем постоянной аэрации.

    Выращивание анаэробных микроорганизмов

    Основным принципом культивирования бактерий этого типа является минимальный их контакт с кислородом воздуха. Обеспечить условия их роста гораздо сложнее, чем для аэробов. Для изоляции анаэробов от молекулярного О 2 применяются следующие методы:

    1. Физические. Этот метод культивирования анаэробных бактерий сводится к их выращиванию в специальном вакуумном аппарате - микроанаэростате. Воздух в нем заменен на особую газовую смесь из азота с добавлением 10 % водорода и 5 % углекислого газа.
    2. Химические. К ним относятся: использование поглощающих агентов (например, Fe, Na 2 S 2 O 4 , CuCl) или восстанавливающих агентов (например, аскорбиновая кислота).
    3. Биологические. Сводится к совместному выращиванию аэробов и анаэробов в закрытой системе. Этот метод культивирования бактерий предполагает засевание одной половины чашки Петри каким-то из аэробных видов бактерий, а второй - изучаемым анаэробом. Развитие его начнется в тот момент, когда истратится весь кислород.

    Для культивирования анаэробных бактерий подходят следующие способы посева:

    • в поверхностном слое;
    • в поверхностном слое с заливкой стерильным парафином;
    • в толще плотной питательной среды;
    • в глубинных слоях вязких сред.

    Получение чистой культуры

    Микробиологи в своей работе обычно имеют дело с образцами, заселенными множеством различных видов микробов. Однако для определения систематического положения микроорганизмов (семейство, род, вид), а также изучения их особенностей необходимо их изолировать и вырастить чистую культуру. Они имеют важнейшее значение во многих пищевых производствах, например, сыра, хлеба, кваса, вина и т. д. Культивирование молочнокислых бактерий позволяет получить важнейший компонент для производства кисломолочных продуктов, теста, какао, силоса и даже пластика.

    Способ выделения в плотной среде основан на механическом отделении клеток микроорганизмов с последующим их изолированным выращиванием. Образец переносится в стерильный объем воды или физраствора (объемом 10—100 мл), а затем встряхивается на протяжении двух минут. Чтобы извлечь микроорганизмы, находящиеся в толще исследуемого материала (например, колбасы или сыра), сначала выполняют растирание кусочков образца стерильными инструментами с песком. Материал, прошедший предварительную подготовку, массой 1 г или объемом 1 мл разбавляют стерильной водой в 10, 100, 1000 и т. д. раз. Выбирают ту степень разведения, которая дает концентрацию клеток, соответствующую возможностям метода.

    Последующее выращивание микроорганизмов заключается в подготовке питательной среды. Обычно выбирается плотная среда (МПА). Ее предварительно расплавляют и остужают до 45—50 °С, а уже потом разливают в несколько чашек Петри (три-пять штук), на дно которых помещены смывы с исследуемого вещества различных концентраций. Далее проводят перемешивание еще не застывшей питательной среды и внесенного в нее материала. Так добиваются фиксирования клеток в различных точках объема субстрата.

    Далее чашки Петри помещают в термостат на 2 суток при 22 °С. За это время клетки размножаются до такой степени, что колония, образованная каждой из клеток, становится видна невооруженным глазом. Каждая из них является чистой культурой того вида бактерий, из клеток которого она выросла.

    После этого с чашек Петри микроорганизмы пересевают в отдельные пробирки, наполненные питательной средой. Таким образом проводится выделение чистых культур из смешанного образца. Этот метод носит имя своего разработчика - Р. Коха. Также его принято называть чашечным методом, или истощающим посевом. После получения чистых культур различных видов бактерий выполняют установление их формы, обнаружение спор, семейства.

    Все работы должны выполняться согласно принципам асептики. Чтобы избежать преждевременного развития микроорганизмов, исследование необходимо проводить сразу после отбора проб. Водопроводную воду анализируют после слива первых порций, поскольку в них могут находиться накопившиеся в трубах и кранах микробы. Микрофлора фруктов, ягод и овощей преимущественно размещена на поверхности (кожуре), поэтому выполняют смывы с нее. Для этого в стерильную емкость помещают плод и заливают его необходимым количеством воды. Затем их довольно энергично встряхивают и сливают воду в другую емкость. Посевы с матерчатых изделий также получают смывами, но предварительно из них вырезают кусочки заданного размера.